Wald_test
performs a Wald test for a GMVAR or SGMVAR model
Wald_test(gmvar, A, c, h = 6e-06)
an object of class 'gmvar'
created with fitGMVAR
or GMVAR
.
a size
a length
difference used to approximate the derivatives.
A list with class "htest" containing the following components:
the value of the Wald statistics.
the degrees of freedom of the Wald statistic.
the p-value of the test.
a character string describing the alternative hypothesis.
a character string indicating the type of the test (Wald test).
a character string giving the names of the supplied model, constraint matrix A, and vector c.
the supplied argument gmvar.
the supplied argument A.
the supplied argument c.
the supplied argument h.
Denoting the true parameter value by =nrow(A)
) degrees of freedom. The parameter gmvar
and it is presented in the documentation of the argument
params
in the function GMVAR
(see ?GMVAR
).
Finally, note that this function does not check whether the specified constraints are feasible (e.g. whether the implied constrained model would be stationary or have positive definite error term covariance matrices).
Kalliovirta L., Meitz M. and Saikkonen P. 2016. Gaussian mixture vector autoregression. Journal of Econometrics, 192, 485-498.
Virolainen S. 2020. Structural Gaussian mixture vector autoregressive model. Unpublished working paper, available as arXiv:2007.04713.
@keywords internal
LR_test
, fitGMVAR
, GMVAR
, diagnostic_plot
,
profile_logliks
, quantile_residual_tests
, cond_moment_plot
# NOT RUN {
# Structural GMVAR(2, 2), d=2 model with recursive identification
W22 <- matrix(c(1, NA, 0, 1), nrow=2, byrow=FALSE)
fit22s <- fitGMVAR(gdpdef, p=2, M=2, structural_pars=list(W=W22),
ncalls=1, seeds=2)
fit22s
# Test whether the lambda parameters (of the second regime) are identical
# (due to the zero constraint, the model is identified under the null):
# fit22s has parameter vector of length 26 with the lambda parameters
# in elements 24 and 25.
A <- matrix(c(rep(0, times=23), 1, -1, 0), nrow=1, ncol=26)
c <- 0
Wald_test(fit22s, A=A, c=c)
# Test whether the off-diagonal elements of the first regime's first
# AR coefficient matrix (A_11) are both zero:
# fit22s has parameter vector of length 26 and the off-diagonal elements
# of the 1st regime's 1st AR coefficient matrix are in the elements 6 and 7.
A <- rbind(c(rep(0, times=5), 1, rep(0, times=20)),
c(rep(0, times=6), 1, rep(0, times=19)))
c <- c(0, 0)
Wald_test(fit22s, A=A, c=c)
# }
Run the code above in your browser using DataLab