pick_df
picks the degrees of freedom parameters from the given parameter vector.
pick_df(M, params, model = c("GMVAR", "StMVAR", "G-StMVAR"))
Returns a length \(M2\) vector containing the degrees of freedom parameters
\(\nu\)\(=(\nu_{M1+1},...,\nu_{M})\). In the case of the GMVAR model (\(M2=0\)), returns a numeric vector of length zero.
a positive integer specifying the number of mixture components.
a size (2x1) integer vector specifying the number of GMVAR type components M1
in the first element and StMVAR type components M2
in the second element. The total number of mixture components
is M=M1+M2
.
a real valued vector specifying the parameter values.
Should be size \(((M(pd^2+d+d(d+1)/2+2)-M1-1)x1)\) and have the form \(\theta\)\( = \)(\(\upsilon\)\(_{1}\), ...,\(\upsilon\)\(_{M}\), \(\alpha_{1},...,\alpha_{M-1},\)\(\nu\)\()\), where
\(\upsilon\)\(_{m}\) \( = (\phi_{m,0},\)\(\phi\)\(_{m}\)\(,\sigma_{m})\)
\(\phi\)\(_{m}\)\( = (vec(A_{m,1}),...,vec(A_{m,p})\)
and \(\sigma_{m} = vech(\Omega_{m})\), m=1,...,M,
\(\nu\)\(=(\nu_{M1+1},...,\nu_{M})\)
\(M1\) is the number of GMVAR type regimes.
Should have the form \(\theta\)\( = (\phi_{1,0},...,\phi_{M,0},\)\(\phi\)\(_{1},...,\)\(\phi\)\(_{M}, vec(W),\)\(\lambda\)\(_{2},...,\)\(\lambda\)\(_{M},\alpha_{1},...,\alpha_{M-1},\)\(\nu\)\()\), where
\(\lambda\)\(_{m}=(\lambda_{m1},...,\lambda_{md})\) contains the eigenvalues of the \(m\)th mixture component.
Above, \(\phi_{m,0}\) is the intercept parameter, \(A_{m,i}\) denotes the \(i\)th coefficient matrix of the \(m\)th
mixture component, \(\Omega_{m}\) denotes the error term covariance matrix of the \(m\):th mixture component, and
\(\alpha_{m}\) is the mixing weight parameter. The \(W\) and \(\lambda_{mi}\) are structural parameters replacing the
error term covariance matrices (see Virolainen, 2022). If \(M=1\), \(\alpha_{m}\) and \(\lambda_{mi}\) are dropped.
If parametrization=="mean"
, just replace each \(\phi_{m,0}\) with regimewise mean \(\mu_{m}\).
\(vec()\) is vectorization operator that stacks columns of a given matrix into a vector. \(vech()\) stacks columns
of a given matrix from the principal diagonal downwards (including elements on the diagonal) into a vector.
In the GMVAR model, \(M1=M\) and \(\nu\) is dropped from the parameter vector. In the StMVAR model,
\(M1=0\). In the G-StMVAR model, the first M1
regimes are GMVAR type and the rest M2
regimes are
StMVAR type. In StMVAR and G-StMVAR models, the degrees of freedom parameters in \(\nu\)
# should be strictly larger than two.
The notation is similar to the cited literature.
No argument checks!
Constrained models are supported, but obtaining the degrees of freedom does not require specifying the constraints.
Kalliovirta L., Meitz M. and Saikkonen P. 2016. Gaussian mixture vector autoregression. Journal of Econometrics, 192, 485-498.
Virolainen S. (forthcoming). A statistically identified structural vector autoregression with endogenously switching volatility regime. Journal of Business & Economic Statistics.
Virolainen S. 2022. Gaussian and Student's t mixture vector autoregressive model with application to the asymmetric effects of monetary policy shocks in the Euro area. Unpublished working paper, available as arXiv:2109.13648.
@keywords internal