pick_phi0
picks the intercept or mean parameters from the given parameter vector.
pick_phi0(p, M, d, params, structural_pars = NULL)
Returns a \((dxM)\) matrix containing \(\phi_{m,0}\) in the m:th column or
\(\mu_{m}\) if the parameter vector is mean-parametrized, \(, m=1,..,M\).
a positive integer specifying the autoregressive order of the model.
a positive integer specifying the number of mixture components.
a size (2x1) integer vector specifying the number of GMVAR type components M1
in the first element and StMVAR type components M2
in the second element. The total number of mixture components
is M=M1+M2
.
the number of time series in the system.
a real valued vector specifying the parameter values.
Should be size \(((M(pd^2+d+d(d+1)/2+2)-M1-1)x1)\) and have the form \(\theta\)\( = \)(\(\upsilon\)\(_{1}\), ...,\(\upsilon\)\(_{M}\), \(\alpha_{1},...,\alpha_{M-1},\)\(\nu\)\()\), where
\(\upsilon\)\(_{m}\) \( = (\phi_{m,0},\)\(\phi\)\(_{m}\)\(,\sigma_{m})\)
\(\phi\)\(_{m}\)\( = (vec(A_{m,1}),...,vec(A_{m,p})\)
and \(\sigma_{m} = vech(\Omega_{m})\), m=1,...,M,
\(\nu\)\(=(\nu_{M1+1},...,\nu_{M})\)
\(M1\) is the number of GMVAR type regimes.
Should have the form \(\theta\)\( = (\phi_{1,0},...,\phi_{M,0},\)\(\phi\)\(_{1},...,\)\(\phi\)\(_{M}, vec(W),\)\(\lambda\)\(_{2},...,\)\(\lambda\)\(_{M},\alpha_{1},...,\alpha_{M-1},\)\(\nu\)\()\), where
\(\lambda\)\(_{m}=(\lambda_{m1},...,\lambda_{md})\) contains the eigenvalues of the \(m\)th mixture component.
Above, \(\phi_{m,0}\) is the intercept parameter, \(A_{m,i}\) denotes the \(i\)th coefficient matrix of the \(m\)th
mixture component, \(\Omega_{m}\) denotes the error term covariance matrix of the \(m\):th mixture component, and
\(\alpha_{m}\) is the mixing weight parameter. The \(W\) and \(\lambda_{mi}\) are structural parameters replacing the
error term covariance matrices (see Virolainen, 2022). If \(M=1\), \(\alpha_{m}\) and \(\lambda_{mi}\) are dropped.
If parametrization=="mean"
, just replace each \(\phi_{m,0}\) with regimewise mean \(\mu_{m}\).
\(vec()\) is vectorization operator that stacks columns of a given matrix into a vector. \(vech()\) stacks columns
of a given matrix from the principal diagonal downwards (including elements on the diagonal) into a vector.
In the GMVAR model, \(M1=M\) and \(\nu\) is dropped from the parameter vector. In the StMVAR model,
\(M1=0\). In the G-StMVAR model, the first M1
regimes are GMVAR type and the rest M2
regimes are
StMVAR type. In StMVAR and G-StMVAR models, the degrees of freedom parameters in \(\nu\)
# should be strictly larger than two.
The notation is similar to the cited literature.
If NULL
a reduced form model is considered. Reduced models can be used directly as recursively
identified structural models. For a structural model identified by conditional heteroskedasticity, should be a list containing
at least the first one of the following elements:
W
- a \((dxd)\) matrix with its entries imposing constraints on \(W\): NA
indicating that the element is
unconstrained, a positive value indicating strict positive sign constraint, a negative value indicating strict
negative sign constraint, and zero indicating that the element is constrained to zero.
C_lambda
- a \((d(M-1) x r)\) constraint matrix that satisfies (\(\lambda\)\(_{2}\)\(,...,\)
\(\lambda\)\(_{M}) =\) \(C_{\lambda} \gamma\) where \(\gamma\) is the new \((r x 1)\)
parameter subject to which the model is estimated (similarly to AR parameter constraints). The entries of C_lambda
must be either positive or zero. Ignore (or set to NULL
) if the eigenvalues \(\lambda_{mi}\)
should not be constrained.
fixed_lambdas
- a length \(d(M-1)\) numeric vector (\(\lambda\)\(_{2}\)\(,...,\)
\(\lambda\)\(_{M})\) with elements strictly larger than zero specifying the fixed parameter values for the
parameters \(\lambda_{mi}\) should be constrained to. This constraint is alternative C_lambda
.
Ignore (or set to NULL
) if the eigenvalues \(\lambda_{mi}\) should not be constrained.
See Virolainen (forthcoming) for the conditions required to identify the shocks and for the B-matrix as well (it is \(W\) times a time-varying diagonal matrix with positive diagonal entries).
No argument checks!
Does not support constrained parameter vectors.
Kalliovirta L., Meitz M. and Saikkonen P. 2016. Gaussian mixture vector autoregression. Journal of Econometrics, 192, 485-498.
Virolainen S. (forthcoming). A statistically identified structural vector autoregression with endogenously switching volatility regime. Journal of Business & Economic Statistics.
Virolainen S. 2022. Gaussian and Student's t mixture vector autoregressive model with application to the asymmetric effects of monetary policy shocks in the Euro area. Unpublished working paper, available as arXiv:2109.13648.
@keywords internal