# GMVAR(2, 2), d=2 model
params22 <- c(0.36, 0.121, 0.223, 0.059, -0.151, 0.395, 0.406, -0.005,
0.083, 0.299, 0.215, 0.002, 0.03, 0.484, 0.072, 0.218, 0.02, -0.119,
0.722, 0.093, 0.032, 0.044, 0.191, 1.101, -0.004, 0.105, 0.58)
mod22 <- GSMVAR(gdpdef, p=2, M=2, d=2, params=params22)
p1 <- predict(mod22, n_ahead=10, pred_type="median", nsim=500)
p1
p2 <- predict(mod22, n_ahead=10, nt=20, lty=1, nsim=500)
p2
p3 <- predict(mod22, n_ahead=10, pi=c(0.99, 0.90, 0.80, 0.70),
nt=30, lty=0, nsim=500)
p3
# StMVAR(2, 2), d=2 model
params22t <- c(0.36, 0.121, 0.223, 0.059, -0.151, 0.395, 0.406, -0.005,
0.083, 0.299, 0.215, 0.002, 0.03, 0.484, 0.072, 0.218, 0.02, -0.119,
0.722, 0.093, 0.032, 0.044, 0.191, 1.101, -0.004, 0.105, 0.58, 3, 4)
mod22t <- GSMVAR(gdpdef, p=2, M=2, d=2, params=params22t, model="StMVAR")
p1 <- predict(mod22t, n_ahead=12, pred_type="median", nsim=500, pi=0.9)
p1
Run the code above in your browser using DataLab