
reorder_W_columns
reorder columns of the W-matrix and lambda parameters
of a structural GMVAR, StMVAR, or G-StMVAR model.
reorder_W_columns(gsmvar, perm)
Returns an object of class 'gsmvar'
defining a structural GMVAR, StMVAR, or G-StMVAR model with the modified
structural parameters and constraints.
an object of class 'gsmvar'
, typically created with fitGSMVAR
or GSMVAR
.
an integer vector of length
The order of the columns of
This function does not support models with constraints imposed on the lambda parameters!
Also all signs in any column of swap_W_signs
but this obviously also swaps the sign constraints in the
corresponding columns of
Kalliovirta L., Meitz M. and Saikkonen P. 2016. Gaussian mixture vector autoregression. Journal of Econometrics, 192, 485-498.
Virolainen S. (forthcoming). A statistically identified structural vector autoregression with endogenously switching volatility regime. Journal of Business & Economic Statistics.
Virolainen S. 2022. Gaussian and Student's t mixture vector autoregressive model with application to the asymmetric effects of monetary policy shocks in the Euro area. Unpublished working paper, available as arXiv:2109.13648.
@keywords internal
fitGSMVAR
, GSMVAR
, GIRF
, gsmvar_to_sgsmvar
,
stmvar_to_gstmvar
, swap_W_signs
# Structural GMVAR(2, 2), d=2 model identified with sign-constraints:
params22s <- c(0.36, 0.121, 0.484, 0.072, 0.223, 0.059, -0.151, 0.395,
0.406, -0.005, 0.083, 0.299, 0.218, 0.02, -0.119, 0.722, 0.093, 0.032,
0.044, 0.191, 0.057, 0.172, -0.46, 0.016, 3.518, 5.154, 0.58)
W_22 <- matrix(c(1, 1, -1, 1), nrow=2, byrow=FALSE)
mod22s <- GSMVAR(p=2, M=2, d=2, params=params22s, structural_pars=list(W=W_22))
mod22s
# The same reduced form model, reordered W and lambda in the structual model:
mod22s_2 <- reorder_W_columns(mod22s, perm=2:1)
mod22s_2
# Structural StMVAR(2, 2), d=2 model identified with sign-constraints:
mod22ts <- GSMVAR(p=2, M=2, d=2, params=c(params22s, 10, 20), model="StMVAR",
structural_pars=list(W=W_22))
mod22ts
# The same reduced form model, reordered W and lambda in the structual model:
mod22ts_2 <- reorder_W_columns(mod22ts, perm=2:1)
mod22ts_2
Run the code above in your browser using DataLab