## fdata_cen() vs fda.usc::fdata_cen()
data(phoneme, package = "fda.usc")
mlearn <- phoneme$learn[1:10, ]
plot(fda.usc::fdata.cen(mlearn)$Xcen)
plot(fdata_cen(mlearn))
## inprod_fdata() vs fda.usc::inprod.fdata()
# inprod_fdata between mlearn and mlearn: as a row vector
A <- fda.usc::inprod.fdata(fdata1 = mlearn)
A[upper.tri(A, diag = TRUE)]
inprod_fdata(X_fdata1 = mlearn, int_rule = "trapezoid", as_matrix = FALSE)
# inprod_fdata between mlearn and mlearn: as a matrix
A <- fda.usc::inprod.fdata(fdata1 = mlearn)
A
inprod_fdata(X_fdata1 = mlearn, int_rule = "trapezoid", as_matrix = TRUE)
# inprod_fdata between mlearn and mlearn2: as a matrix
mlearn2 <- phoneme$learn[11:30, ]
A <- fda.usc::inprod.fdata(fdata1 = mlearn, fdata2 = mlearn2)
A
B <- inprod_fdata(X_fdata1 = mlearn, X_fdata2 = mlearn2,
int_rule = "trapezoid", as_matrix = TRUE)
B
# \donttest{
## Efficiency comparisons
microbenchmark::microbenchmark(fda.usc::fdata.cen(mlearn), fdata_cen(mlearn),
times = 1e3, control = list(warmup = 20))
microbenchmark::microbenchmark(fda.usc::inprod.fdata(fdata1 = mlearn),
inprod_fdata(X_fdata1 = mlearn,
as_matrix = FALSE), times = 1e3,
control = list(warmup = 20))
# }
Run the code above in your browser using DataLab