## Quick example of functional response and functional predictor
# Generate data
set.seed(12345)
n <- 50
X_fdata <- r_ou(n = n, t = seq(0, 1, l = 201), sigma = 2)
epsilon <- r_ou(n = n, t = seq(0, 1, l = 201), sigma = 0.5)
Y_fdata <- 2 * X_fdata + epsilon
# Lasso-selection FPCR (p and q are estimated)
flm_est(X = X_fdata, Y = Y_fdata, est_method = "fpcr_l1s")
# \donttest{
## Functional response and functional predictor
# Generate data
set.seed(12345)
n <- 50
X_fdata <- r_ou(n = n, t = seq(0, 1, l = 201), sigma = 2)
epsilon <- r_ou(n = n, t = seq(0, 1, l = 201), sigma = 0.5)
Y_fdata <- 2 * X_fdata + epsilon
# FPCR (p and q are estimated)
fpcr_1 <- flm_est(X = X_fdata, Y = Y_fdata, est_method = "fpcr")
fpcr_1$Beta_hat_scores
fpcr_1$p_thre
fpcr_1$q_thre
# FPCR (p and q are provided)
fpcr_2 <- flm_est(X = X_fdata, Y = Y_fdata, est_method = "fpcr",
p = c(1, 5, 2, 7), q = 2:1)
fpcr_2$Beta_hat_scores
fpcr_2$p_thre
fpcr_2$q_thre
# Ridge FPCR (p and q are estimated)
l2_1 <- flm_est(X = X_fdata, Y = Y_fdata, est_method = "fpcr_l2")
l2_1$Beta_hat_scores
l2_1$p_hat
# Ridge FPCR (p and q are provided)
l2_2 <- flm_est(X = X_fdata, Y = Y_fdata, est_method = "fpcr_l2",
p = c(1, 5, 2, 7), q = 2:1)
l2_2$Beta_hat_scores
l2_2$p_hat
# Lasso FPCR (p and q are estimated)
l1_1 <- flm_est(X = X_fdata, Y = Y_fdata, est_method = "fpcr_l1")
l1_1$Beta_hat_scores
l1_1$p_thre
l1_1$p_hat
# Lasso estimator (p and q are provided)
l1_2 <- flm_est(X = X_fdata, Y = Y_fdata, est_method = "fpcr_l1",
p = c(1, 5, 2, 7), q = 2:1)
l1_2$Beta_hat_scores
l1_2$p_thre
l1_2$p_hat
# Lasso-selection FPCR (p and q are estimated)
l1s_1 <- flm_est(X = X_fdata, Y = Y_fdata, est_method = "fpcr_l1s")
l1s_1$Beta_hat_scores
l1s_1$p_thre
l1s_1$p_hat
# Lasso-selection FPCR (p and q are provided)
l1s_2 <- flm_est(X = X_fdata, Y = Y_fdata, est_method = "fpcr_l1s",
p = c(1, 5, 2, 7), q = 1:4)
l1s_2$Beta_hat_scores
l1s_2$p_thre
l1s_2$p_hat
## Scalar response
# Generate data
set.seed(12345)
n <- 50
beta <- r_ou(n = 1, t = seq(0, 1, l = 201), sigma = 0.5, x0 = 3)
X_fdata <- fdata_cen(r_ou(n = n, t = seq(0, 1, l = 201), sigma = 2))
epsilon <- rnorm(n, sd = 0.25)
Y <- drop(inprod_fdata(X_fdata1 = X_fdata, X_fdata2 = beta)) + epsilon
# FPCR
fpcr_4 <- flm_est(X = X_fdata, Y = Y, est_method = "fpcr")
fpcr_4$p_hat
# Ridge FPCR
l2_4 <- flm_est(X = X_fdata, Y = Y, est_method = "fpcr_l2")
l2_4$p_hat
# Lasso FPCR
l1_4 <- flm_est(X = X_fdata, Y = Y, est_method = "fpcr_l1")
l1_4$p_hat
# Lasso-selection FPCR
l1s_4 <- flm_est(X = X_fdata, Y = Y, est_method = "fpcr_l1s")
l1s_4$p_hat
## Scalar predictor
# Generate data
set.seed(12345)
n <- 50
X <- rnorm(n)
epsilon <- r_ou(n = n, t = seq(0, 1, l = 201), sigma = 0.5)
beta <- r_ou(n = 1, t = seq(0, 1, l = 201), sigma = 0.5, x0 = 3)
beta$data <- matrix(beta$data, nrow = n, ncol = ncol(beta$data),
byrow = TRUE)
Y_fdata <- beta * X + epsilon
# FPCR
fpcr_4 <- flm_est(X = X, Y = Y_fdata, est_method = "fpcr")
plot(beta, col = 2)
lines(beta$argvals, drop(fpcr_4$Beta_hat))
# }
Run the code above in your browser using DataLab