## Generate a sample of functional responses via FLMFR
# Bivariate kernel beta(s,t) as an egg carton shape
s <- seq(0, 1, l = 101)
t <- seq(0, 1, l = 201)
beta <- outer(s, t, FUN = function(s, t) sin(6 * pi * s) + cos(6 * pi * t))
# Functional data as zero-mean Gaussian process with exponential variogram
X_fdata <- fda.usc::rproc2fdata(n = 50, t = s, sigma = "vexponential",
list = list(scale = 2.5))
# Functional error as an OU process with variance 0.075
sigma <- sqrt(0.075) * 2
error_fdata <- r_ou(n = 50, t = t, sigma = sigma)
Y_fdata <- flm_term(X_fdata = X_fdata, beta = beta, t = t) + error_fdata
plot(Y_fdata)
## Generate a sample of functional responses via concurrent model
# Function beta(t)
s <- seq(1, 3, l = 201)
t <- seq(2, 5, l = 201)
beta <- sin(pi * t) + cos(pi * t)
# Functional data as zero-mean Gaussian process with exponential variogram
X_fdata <- fda.usc::rproc2fdata(n = 50, t = s, sigma = "vexponential",
list = list(scale = 2.5))
# Functional error as an OU process with variance 0.075
sigma <- sqrt(0.075) * 2
error_fdata <- r_ou(n = 50, t = t, sigma = sigma)
Y_fdata <- flm_term(X_fdata = X_fdata, beta = beta, t = t,
concurrent = TRUE) + error_fdata
plot(Y_fdata)
Run the code above in your browser using DataLab