## Quick example for functional response and predictor
# Generate data under H0
n <- 100
set.seed(987654321)
X_fdata <- r_ou(n = n, t = seq(0, 1, l = 101), sigma = 2)
epsilon <- r_ou(n = n, t = seq(0, 1, l = 101), sigma = 0.5)
Y_fdata <- epsilon
# Test the FLMFR
flm_test(X = X_fdata, Y = Y_fdata)
# Simple hypothesis
flm_test(X = X_fdata, Y = Y_fdata, beta0 = 0)
# Generate data under H1
n <- 100
set.seed(987654321)
sample_frm_fr <- r_frm_fr(n = n, scenario = 3, s = seq(0, 1, l = 101),
t = seq(0, 1, l = 101), nonlinear = "quadratic")
X_fdata <- sample_frm_fr[["X_fdata"]]
Y_fdata <- sample_frm_fr[["Y_fdata"]]
# Test the FLMFR
flm_test(X = X_fdata, Y = Y_fdata)
# \donttest{
## Functional response and predictor
# Generate data under H0
n <- 50
B <- 100
set.seed(987654321)
t <- seq(0, 1, l = 201)
X_fdata <- r_ou(n = n, t = t, sigma = 2)
epsilon <- r_ou(n = n, t = t, sigma = 0.5)
Y_fdata <- epsilon
# With boot_scores = TRUE
flm_test(X = X_fdata, Y = Y_fdata, est_method = "fpcr", B = B)
flm_test(X = X_fdata, Y = Y_fdata, est_method = "fpcr_l2", B = B)
flm_test(X = X_fdata, Y = Y_fdata, est_method = "fpcr_l1s", B = B)
# With boot_scores = FALSE
flm_test(X = X_fdata, Y = Y_fdata, est_method = "fpcr",
boot_scores = FALSE, B = B)
flm_test(X = X_fdata, Y = Y_fdata, est_method = "fpcr_l2",
boot_scores = FALSE, B = B)
flm_test(X = X_fdata, Y = Y_fdata, est_method = "fpcr_l1",
boot_scores = FALSE, B = B)
flm_test(X = X_fdata, Y = Y_fdata, est_method = "fpcr_l1s",
boot_scores = FALSE, B = B)
# Simple hypothesis
flm_test(X = X_fdata, Y = Y_fdata, beta0 = 2, est_method = "fpcr", B = B)
flm_test(X = X_fdata, Y = Y_fdata, beta0 = 0, est_method = "fpcr", B = B)
flm_test(X = X_fdata, Y = Y_fdata, beta0 = 0, est_method = "fpcr_l1s", B = B)
# Generate data under H1
n <- 50
B <- 100
set.seed(987654321)
sample_frm_fr <- r_frm_fr(n = n, scenario = 3, s = t, t = t,
nonlinear = "quadratic")
X_fdata <- sample_frm_fr$X_fdata
Y_fdata <- sample_frm_fr$Y_fdata
# With boot_scores = TRUE
flm_test(X = X_fdata, Y = Y_fdata, est_method = "fpcr", B = B)
flm_test(X = X_fdata, Y = Y_fdata, est_method = "fpcr_l2", B = B)
flm_test(X = X_fdata, Y = Y_fdata, est_method = "fpcr_l1s", B = B)
# With boot_scores = FALSE
flm_test(X = X_fdata, Y = Y_fdata, est_method = "fpcr",
boot_scores = FALSE, B = B)
flm_test(X = X_fdata, Y = Y_fdata, est_method = "fpcr_l2",
boot_scores = FALSE, B = B)
flm_test(X = X_fdata, Y = Y_fdata, est_method = "fpcr_l1",
boot_scores = FALSE, B = B)
flm_test(X = X_fdata, Y = Y_fdata, est_method = "fpcr_l1s",
boot_scores = FALSE, B = B)
## Scalar response and functional predictor
# Generate data under H0
n <- 50
B <- 100
set.seed(987654321)
t <- seq(0, 1, l = 201)
X_fdata <- r_ou(n = n, t = t, sigma = 2)
beta <- r_ou(n = 1, t = t, sigma = 0.5, x0 = 2)
epsilon <- rnorm(n = n)
Y <- drop(inprod_fdata(X_fdata1 = X_fdata, X_fdata2 = beta) + epsilon)
# With boot_scores = TRUE
flm_test(X = X_fdata, Y = Y, est_method = "fpcr", B = B)
flm_test(X = X_fdata, Y = Y, est_method = "fpcr_l2", B = B)
flm_test(X = X_fdata, Y = Y, est_method = "fpcr_l1s", B = B)
# With boot_scores = FALSE
flm_test(X = X_fdata, Y = Y, est_method = "fpcr",
boot_scores = FALSE, B = B)
flm_test(X = X_fdata, Y = Y, est_method = "fpcr_l2",
boot_scores = FALSE, B = B)
flm_test(X = X_fdata, Y = Y, est_method = "fpcr_l1",
boot_scores = FALSE, B = B)
flm_test(X = X_fdata, Y = Y, est_method = "fpcr_l1s",
boot_scores = FALSE, B = B)
# Simple hypothesis
flm_test(X = X_fdata, Y = Y, beta0 = beta, est_method = "fpcr", B = B)
flm_test(X = X_fdata, Y = Y, beta0 = 0, est_method = "fpcr", B = B)
flm_test(X = X_fdata, Y = Y, beta0 = 0, est_method = "fpcr_l1s", B = B)
# Generate data under H1
n <- 50
B <- 100
set.seed(987654321)
X_fdata <- r_ou(n = n, t = t, sigma = 2)
beta <- r_ou(n = 1, t = t, sigma = 0.5)
epsilon <- rnorm(n = n)
Y <- drop(exp(inprod_fdata(X_fdata1 = X_fdata^2, X_fdata2 = beta)) + epsilon)
# With boot_scores = TRUE
flm_test(X = X_fdata, Y = Y, est_method = "fpcr", B = B)
flm_test(X = X_fdata, Y = Y, est_method = "fpcr_l2", B = B)
flm_test(X = X_fdata, Y = Y, est_method = "fpcr_l1s", B = B)
# With boot_scores = FALSE
flm_test(X = X_fdata, Y = Y, est_method = "fpcr",
boot_scores = FALSE, B = B)
flm_test(X = X_fdata, Y = Y, est_method = "fpcr_l2",
boot_scores = FALSE, B = B)
flm_test(X = X_fdata, Y = Y, est_method = "fpcr_l1",
boot_scores = FALSE, B = B)
flm_test(X = X_fdata, Y = Y, est_method = "fpcr_l1s",
boot_scores = FALSE, B = B)
## Functional response and scalar predictor
# Generate data under H0
n <- 50
B <- 100
set.seed(987654321)
X <- rnorm(n)
t <- seq(0, 1, l = 201)
beta <- r_ou(n = 1, t = t, sigma = 0.5, x0 = 3)
beta$data <- matrix(beta$data, nrow = n, ncol = ncol(beta$data),
byrow = TRUE)
epsilon <- r_ou(n = n, t = t, sigma = 0.5)
Y_fdata <- X * beta + epsilon
# With boot_scores = TRUE
flm_test(X = X, Y = Y_fdata, est_method = "fpcr", B = B)
# With boot_scores = FALSE
flm_test(X = X, Y = Y_fdata, est_method = "fpcr", boot_scores = FALSE, B = B)
# Simple hypothesis
flm_test(X = X, Y = Y_fdata, beta0 = beta[1], est_method = "fpcr", B = B)
flm_test(X = X, Y = Y_fdata, beta0 = 0, est_method = "fpcr", B = B)
# Generate data under H1
n <- 50
B <- 100
set.seed(987654321)
X <- rexp(n)
beta <- r_ou(n = 1, t = t, sigma = 0.5, x0 = 3)
beta$data <- matrix(beta$data, nrow = n, ncol = ncol(beta$data),
byrow = TRUE)
epsilon <- r_ou(n = n, t = t, sigma = 0.5)
Y_fdata <- log(X * beta) + epsilon
# With boot_scores = TRUE
flm_test(X = X, Y = Y_fdata, est_method = "fpcr", B = B)
# With boot_scores = FALSE
flm_test(X = X, Y = Y_fdata, est_method = "fpcr", boot_scores = FALSE, B = B)
# }
Run the code above in your browser using DataLab