Learn R Programming

googleAnalyticsR (version 0.3.0)

google_analytics: Get Google Analytics v3 data

Description

Get Google Analytics v3 data

Usage

google_analytics(id, start, end, metrics = c("sessions", "bounceRate"), dimensions = NULL, sort = NULL, filters = NULL, segment = NULL, samplingLevel = c("DEFAULT", "FASTER", "HIGHER_PRECISION", "WALK"), max_results = 100, multi_account_batching = FALSE, type = c("ga", "mcf"))

Arguments

id
A character vector of View Ids to fetch from.
start
Start date in YYY-MM-DD format.
end
End date in YYY-MM-DD format.
metrics
A character vector of metrics. With or without ga: prefix.
dimensions
A character vector of dimensions. With or without ga: prefix.
sort
How to sort the results, in form 'ga:sessions,-ga:bounceRate'
filters
Filters for the result, in form 'ga:sessions>0;ga:pagePath=~blah'
segment
How to segment.
samplingLevel
Choose "WALK" to mitigate against sampling.
max_results
Default 100. If greater than 10,000 then will batch GA calls.
multi_account_batching
If TRUE then multiple id's are fetched together. Not compatible with samplingLevel="WALK" or max_results>10000
type
ga = Google Analytics v3; mcf = Multi-Channel Funels.

Value

For one id a data.frame of data, with meta-data in attributes. For multiple id's, a list of dataframes.

See Also

https://developers.google.com/analytics/devguides/reporting/core/v3/

Examples

Run this code

## Not run: 
# 
# library(googleAnalyticsR)
# 
# ## Authenticate in Google OAuth2
# ## this also sets options
# ga_auth()
# 
# ## if you need to re-authenticate use ga_auth(new_user=TRUE)
# ## if you have your own Google Dev console project keys,
# ## then don't run ga_auth() as that will set to the defaults.
# ## instead put your options here, and run googleAuthR::gar_auth()
# 
# ## get account info, including View Ids
# account_list <- google_analytics_account_list()
# ga_id <- account_list$viewId[1]
# 
# ## get a list of what metrics and dimensions you can use
# 
# meta <- google_analytics_meta()
# head(meta)
# 
# ## pick the account_list$viewId you want to see data for.
# ## metrics and dimensions can have or have not "ga:" prefix
# 
# gadata <- google_analytics(id = ga_id,
#                            start="2015-08-01", end="2015-08-02",
#                            metrics = c("sessions", "bounceRate"),
#                            dimensions = c("source", "medium"))
#                        
#  ## multi accounts, pass character vector of viewIds
#  ## outputs a list of data.frames, named after the viewId
#  multi_gadata <- google_analytics(id = c("123456","9876545","765432"),
#                                   start="2015-08-01", end="2015-08-02",
#                                   metrics = c("sessions", "bounceRate"),
#                                    dimensions = c("source", "medium"))
#                                 
# ## if more than 10000 rows in results, auto batching
# ## example is setting lots of dimensions to try and create big sampled data
# batch_gadata <- google_analytics(id = ga_id,
#                                  start="2014-08-01", end="2015-08-02",
#                                  metrics = c("sessions", "bounceRate"),
#                                  dimensions = c("source", "medium", 
#                                                "landingPagePath",
#                                                "hour","minute"),
#                                 max=99999999)
# 
# ## mitigate sampling by setting samplingLevel="WALK"
# ## this will send lots and lots of calls to the Google API limits, beware
# walk_gadata <- google_analytics(id = ga_id,
#                                 start="2014-08-01", end="2015-08-02",
#                                 metrics = c("sessions", "bounceRate"),
#                                 dimensions = c("source", "medium", "landingPagePath"),
#                                 max=99999999, samplingLevel="WALK")
#                                 
# ## multi-channel funnels set type="mcf"
# mcf_gadata <- google_analytics(id = ga_id,
#                                start="2015-08-01", end="2015-08-02",
#                                metrics = c("totalConversions"),
#                                dimensions = c("sourcePath"),
#                                type="mcf")
# 
# 
# ## reach meta-data via attr()
# attr(gadata, "profileInfo")
# attr(gadata, "dateRange")
# 
# 
# ## End(Not run)

Run the code above in your browser using DataLab