Learn R Programming

gp (version 1.1)

gp.mle: Maximum likelihood estimation of the generalized Poisson distribution

Description

Maximum likelihood estimation of the generalized Poisson distribution.

Usage

gp.mle(y)

Value

A vector with three numbers, the \(\theta\) and \(\lambda\) parameters and the value of the log-likelihood.

Arguments

y

A vector with non negative integer values.

Author

Michail Tsagris.

R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

Details

The probability density function of the generalized Poisson distribution is the following (Nikoloulopoulos & Karlis, 2008): $$ P(Y=y|\theta, \lambda)=\theta(\theta+\lambda y)^{y-1}\frac{e^{-\theta-\lambda y}}{y!}, \ \ y=0,1... \ \ \theta >0, \ \ 0 \leq \lambda \leq 1. $$ To ensure that \(\theta\) is positive we use the "log" link and for \(\lambda\) to lie within 0 and 1 we use the "logit" link within the optim function.

References

Nikoloulopoulos A.K. & Karlis D. (2008). On modeling count data: a comparison of some well-known discrete distributions. Journal of Statistical Computation and Simulation, 78(3): 437--457.

See Also

gp.reg, rgp

Examples

Run this code
y <-  rgp(1000, 10, 0.5, method = "Inversion")
gp.mle(y)

Run the code above in your browser using DataLab