# NOT RUN {
# See https://github.com/fabsig/GPBoost/tree/master/R-package for more examples
library(gpboost)
data(GPBoost_data, package = "gpboost")
#--------------------Grouped random effects model: single-level random effect----------------
gp_model <- GPModel(group_data = group_data[,1], likelihood="gaussian")
fit(gp_model, y = y, params = list(std_dev = TRUE))
summary(gp_model)
# Make predictions
pred <- predict(gp_model, group_data_pred = group_data_test[,1], predict_var = TRUE)
pred$mu # Predicted mean
pred$var # Predicted variances
# Also predict covariance matrix
pred <- predict(gp_model, group_data_pred = group_data_test[,1], predict_cov_mat = TRUE)
pred$mu # Predicted mean
pred$cov # Predicted covariance
# }
# NOT RUN {
#--------------------Gaussian process model----------------
gp_model <- GPModel(gp_coords = coords, cov_function = "exponential",
likelihood="gaussian")
fit(gp_model, y = y, params = list(std_dev = TRUE))
summary(gp_model)
# Make predictions
pred <- predict(gp_model, gp_coords_pred = coords_test, predict_cov_mat = TRUE)
# Predicted (posterior/conditional) mean of GP
pred$mu
# Predicted (posterior/conditional) covariance matrix of GP
pred$cov
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab