# NOT RUN {
# See https://github.com/fabsig/GPBoost/tree/master/R-package for more examples
library(gpboost)
data(GPBoost_data, package = "gpboost")
#--------------------Combine tree-boosting and grouped random effects model----------------
# Create random effects model
gp_model <- GPModel(group_data = group_data[,1], likelihood = "gaussian")
# The default optimizer for covariance parameters for Gaussian data is Fisher scoring.
# For non-Gaussian data, gradient descent is used.
# Optimizer properties can be changed as follows:
# re_params <- list(optimizer_cov = "gradient_descent", use_nesterov_acc = TRUE)
# gp_model$set_optim_params(params=re_params)
# Use trace = TRUE to monitor convergence:
# re_params <- list(trace = TRUE)
# gp_model$set_optim_params(params=re_params)
# Train model
bst <- gpboost(data = X,
label = y,
gp_model = gp_model,
nrounds = 16,
learning_rate = 0.05,
max_depth = 6,
min_data_in_leaf = 5,
objective = "regression_l2",
verbose = 0)
# Estimated random effects model
summary(gp_model)
# Make predictions
pred <- predict(bst, data = X_test, group_data_pred = group_data_test[,1],
predict_var= TRUE)
pred$random_effect_mean # Predicted mean
pred$random_effect_cov # Predicted variances
pred$fixed_effect # Predicted fixed effect from tree ensemble
# Sum them up to otbain a single prediction
pred$random_effect_mean + pred$fixed_effect
# }
# NOT RUN {
#--------------------Combine tree-boosting and Gaussian process model----------------
# Create Gaussian process model
gp_model <- GPModel(gp_coords = coords, cov_function = "exponential",
likelihood = "gaussian")
# Train model
bst <- gpboost(data = X,
label = y,
gp_model = gp_model,
nrounds = 8,
learning_rate = 0.1,
max_depth = 6,
min_data_in_leaf = 5,
objective = "regression_l2",
verbose = 0)
# Estimated random effects model
summary(gp_model)
# Make predictions
pred <- predict(bst, data = X_test, gp_coords_pred = coords_test,
predict_cov_mat =TRUE)
pred$random_effect_mean # Predicted (posterior) mean of GP
pred$random_effect_cov # Predicted (posterior) covariance matrix of GP
pred$fixed_effect # Predicted fixed effect from tree ensemble
# Sum them up to otbain a single prediction
pred$random_effect_mean + pred$fixed_effect
# }
Run the code above in your browser using DataLab