# NOT RUN {
# See https://github.com/fabsig/GPBoost/tree/master/R-package for more examples
# }
# NOT RUN {
library(gpboost)
data(GPBoost_data, package = "gpboost")
# Create random effects model, dataset, and define parameter grif
gp_model <- GPModel(group_data = group_data[,1], likelihood="gaussian")
dtrain <- gpb.Dataset(X, label = y)
params <- list(objective = "regression_l2")
param_grid = list("learning_rate" = c(0.1,0.01), "min_data_in_leaf" = c(20),
"max_depth" = c(5,10), "num_leaves" = 2^17, "max_bin" = c(255,1000))
# Parameter tuning using cross-validation and deterministic grid search
set.seed(1)
opt_params <- gpb.grid.search.tune.parameters(param_grid = param_grid,
params = params,
num_try_random = NULL,
nfold = 4,
data = dtrain,
gp_model = gp_model,
verbose_eval = 1,
nrounds = 1000,
early_stopping_rounds = 5,
eval = "l2")
# Parameter tuning using cross-validation and random grid search
set.seed(1)
opt_params <- gpb.grid.search.tune.parameters(param_grid = param_grid,
params = params,
num_try_random = 4,
nfold = 4,
data = dtrain,
gp_model = gp_model,
verbose_eval = 1,
nrounds = 1000,
early_stopping_rounds = 5,
eval = "l2")
# }
Run the code above in your browser using DataLab