Learn R Programming

gpboost (version 0.7.9)

fit: Generic 'fit' method for a GPModel

Description

Generic 'fit' method for a GPModel

Usage

fit(gp_model, y, X, params, fixed_effects = NULL)

Arguments

gp_model

a GPModel

y

A vector with response variable data

X

A matrix with numeric covariate data for the fixed effects linear regression term (if there is one)

params

A list with parameters for the model fitting / optimization

  • optimizer_cov Optimizer used for estimating covariance parameters. Options: "gradient_descent", "fisher_scoring", "nelder_mead", "bfgs", "adam". Default= gradient_descent"

  • optimizer_coef Optimizer used for estimating linear regression coefficients, if there are any (for the GPBoost algorithm there are usually none). Options: "gradient_descent", "wls", "nelder_mead", "bfgs", "adam". Gradient descent steps are done simultaneously with gradient descent steps for the covariance parameters. "wls" refers to doing coordinate descent for the regression coefficients using weighted least squares. Default="wls" for Gaussian data and "gradient_descent" for other likelihoods. If 'optimizer_cov' is set to "nelder_mead", "bfgs", or "adam", 'optimizer_coef' is automatically also set to the same value.

  • maxit Maximal number of iterations for optimization algorithm. Default=1000

  • delta_rel_conv Convergence tolerance. The algorithm stops if the relative change in eiher the (approximate) log-likelihood or the parameters is below this value. For "bfgs" and "adam", the L2 norm of the gradient is used instead of the relative change in the log-likelihood. Default=1E-6

  • convergence_criterion The convergence criterion used for terminating the optimization algorithm. Options: "relative_change_in_log_likelihood" (default) or "relative_change_in_parameters"

  • init_coef Initial values for the regression coefficients (if there are any, can be NULL). Default=NULL

  • init_cov_pars Initial values for covariance parameters of Gaussian process and random effects (can be NULL). Default=NULL

  • lr_coef Learning rate for fixed effect regression coefficients if gradient descent is used. Default=0.1

  • lr_cov Learning rate for covariance parameters. If <= 0, internal default values are used. Default value = 0.1 for "gradient_descent" and 1. for "fisher_scoring"

  • use_nesterov_acc If TRUE Nesterov acceleration is used. This is used only for gradient descent. Default=TRUE

  • acc_rate_coef Acceleration rate for regression coefficients (if there are any) for Nesterov acceleration. Default=0.5

  • acc_rate_cov Acceleration rate for covariance parameters for Nesterov acceleration. Default=0.5

  • momentum_offset Number of iterations for which no momentum is applied in the beginning. Default=2

  • trace If TRUE, information on the progress of the parameter optimization is printed. Default=FALSE

  • std_dev If TRUE, approximate standard deviations are calculated for the covariance and linear regression parameters (= square root of diagonal of the inverse Fisher information for Gaussian likelihoods and square root of diagonal of a numerically approximated inverse Hessian for non-Gaussian likelihoods)

fixed_effects

A vector of optional external fixed effects which are held fixed during training.

Author

Fabio Sigrist