# See https://github.com/fabsig/GPBoost/tree/master/R-package for more examples
# \donttest{
data(GPBoost_data, package = "gpboost")
# Add intercept column
X1 <- cbind(rep(1,dim(X)[1]),X)
X_test1 <- cbind(rep(1,dim(X_test)[1]),X_test)
#--------------------Grouped random effects model: single-level random effect----------------
gp_model <- fitGPModel(group_data = group_data[,1], y = y, X = X1,
likelihood="gaussian", params = list(std_dev = TRUE))
summary(gp_model)
# Make predictions
pred <- predict(gp_model, group_data_pred = group_data_test[,1],
X_pred = X_test1, predict_var = TRUE)
pred$mu # Predicted mean
pred$var # Predicted variances
# Also predict covariance matrix
pred <- predict(gp_model, group_data_pred = group_data_test[,1],
X_pred = X_test1, predict_cov_mat = TRUE)
pred$mu # Predicted mean
pred$cov # Predicted covariance
#--------------------Two crossed random effects and a random slope----------------
gp_model <- fitGPModel(group_data = group_data, likelihood="gaussian",
group_rand_coef_data = X[,2],
ind_effect_group_rand_coef = 1,
y = y, X = X1, params = list(std_dev = TRUE))
summary(gp_model)
#--------------------Gaussian process model----------------
gp_model <- fitGPModel(gp_coords = coords, cov_function = "matern", cov_fct_shape = 1.5,
likelihood="gaussian", y = y, X = X1, params = list(std_dev = TRUE))
summary(gp_model)
# Make predictions
pred <- predict(gp_model, gp_coords_pred = coords_test,
X_pred = X_test1, predict_cov_mat = TRUE)
pred$mu # Predicted (posterior) mean of GP
pred$cov # Predicted (posterior) covariance matrix of GP
#--------------------Gaussian process model with Vecchia approximation----------------
gp_model <- fitGPModel(gp_coords = coords, cov_function = "matern", cov_fct_shape = 1.5,
gp_approx = "vecchia", num_neighbors = 20,
likelihood="gaussian", y = y)
summary(gp_model)
#--------------------Gaussian process model with random coefficients----------------
gp_model <- fitGPModel(gp_coords = coords, cov_function = "matern", cov_fct_shape = 1.5,
gp_rand_coef_data = X[,2], y=y,
likelihood = "gaussian", params = list(std_dev = TRUE))
summary(gp_model)
#--------------------Combine Gaussian process with grouped random effects----------------
gp_model <- fitGPModel(group_data = group_data,
gp_coords = coords, cov_function = "matern", cov_fct_shape = 1.5,
likelihood = "gaussian", y = y, X = X1, params = list(std_dev = TRUE))
summary(gp_model)
# }
Run the code above in your browser using DataLab