Learn R Programming

gptk (version 1.08)

Gaussian Processes Tool-Kit

Description

The gptk package implements a general-purpose toolkit for Gaussian process regression with a variety of covariance functions (e.g. RBF, Mattern, polynomial, etc). Based on a MATLAB implementation by Neil D. Lawrence. See inst/doc/index.html for more details.

Copy Link

Version

Install

install.packages('gptk')

Monthly Downloads

38

Version

1.08

License

BSD_2_clause + file LICENSE

Maintainer

Alfredo A Kalaitzis

Last Published

March 7th, 2014

Functions in gptk (1.08)

expTransform

Constrains a parameter.
demGpCov2D

Gaussian Process 2D Covariance Demo
noiseCreate

Initialise a noise structure.
cmpndNoiseParamInit

CMPND noise parameter initialisation.
gpComputeAlpha

Update the vector `alpha' for computing posterior mean quickly.
demAutoOptimiseGp

Gaussian Process Optimisation Demo
demGpSample

Gaussian Process Sampling Demo
gpOut

Evaluate the output of an Gaussian process model.
gpScaleBiasGradient

Compute the log likelihood gradient wrt the scales.
modelGradientCheck

Check gradients of given model.
rbfKernDiagGradX

Gradient of RBF kernel's diagonal with respect to X.
modelDisplay

Display a model.
cmpndKernParamInit

CMPND kernel parameter initialisation.
gpGradient

Gradient wrapper for a GP model.
gpMeanFunctionGradient

Compute the log likelihood gradient wrt the scales.
gaussSamp

Sample from a Gaussian with a given covariance.
gpCovGrads

Sparse objective function gradients wrt Covariance functions for inducing variables.
gaussianNoiseOut

Compute the output of the GAUSSIAN noise given the input mean and variance.
gpPlot

Gaussian Process Plotter
whiteKernDiagGradX

Gradient of WHITE kernel's diagonal with respect to X.
rbfKernGradX

Gradient of RBF kernel with respect to input locations.
kernCompute

Compute the kernel given the parameters and X.
gpBlockIndices

Return indices of given block.
gpExpandParam

Expand a parameter vector into a GP model.
demOptimiseGp

Gaussian Process Optimisation Demo
gpLogLikeGradients

Compute the gradients for the parameters and X.
gpTest

Test the gradients of the gpCovGrads function and the gp models.
modelExpandParam

Update a model structure with new parameters or update the posterior processes.
modelOut

Give the output of a model for given X.
gpUpdateKernels

Update the kernels that are needed.
noiseOut

Give the output of the noise model given the mean and variance.
modelExtractParam

Extract the parameters of a model.
gpDataIndices

Return indices of present data.
kernDiagGradient

Compute the gradient of the kernel's parameters for the diagonal.
gpComputeM

Compute the matrix m given the model.
gaussianNoiseParamInit

GAUSSIAN noise parameter initialisation.
basePlot

Plot a contour of the 2D Gaussian distribution with covariance matrix K.
demRegression

Gaussian Process Regression Demo
gpCovGradsTest

Test the gradients of the likelihood wrt the covariance.
kernCreate

Initialise a kernel structure.
gpCreate

Create a GP model with inducing variables/pseudo-inputs.
kernGradient

Compute the gradient wrt the kernel parameters.
kernParamInit

Kernel parameter initialisation.
kernTest

Run some tests on the specified kernel.
gpLogLikelihood

Compute the log likelihood of a GP.
zeroAxes

A function to move the axes crossing point to the origin.
gpPosteriorSample

Plot Samples from a GP Posterior.
optimiDefaultConstraint

Returns function for parameter constraint.
gpOptimise

Optimise the inducing variable based kernel.
gpExtractParam

Extract a parameter vector from a GP model.
noiseParamInit

Noise model's parameter initialisation.
SCGoptim

Optimise the given function using (scaled) conjugate gradients.
modelGradient

Model log-likelihood/objective error function and its gradient.
whiteKernParamInit

WHITE kernel parameter initialisation.
gpOptions

Return default options for GP model.
rbfKernParamInit

RBF kernel parameter initialisation.
kernDiagGradX

Compute the gradient of the kernel wrt X.
gpPosteriorMeanVar

Mean and variances of the posterior at points given by X.
gpUpdateAD

Update the representations of A and D associated with the model.
multiKernParamInit

MULTI kernel parameter initialisation.
gpSample

Plot Samples from a GP.
whiteKernGradX

Gradient of WHITE kernel with respect to input locations.
gpObjective

Wrapper function for GP objective.
modelOutputGrad

Compute derivatives with respect to params of model outputs.
demInterpolation

Gaussian Process Interpolation Demo