Learn R Programming

graphPAF (version 2.0.0)

if_bruzzi: Internal: Calculation of an impact fraction using the Bruzzi approach

Description

Internal: Calculation of an impact fraction using the Bruzzi approach

Usage

if_bruzzi(data, ind, model, model_type, new_data, response, weight_vec)

Value

A numeric estimated impact fraction.

Arguments

data

A dataframe containing variables used for fitting the model

ind

An indicator of which rows will be used from the dataset

model

Either a clogit or glm fitted model object. Non-linear effects should be specified via ns(x, df=y), where ns is the natural spline function from the splines library.

model_type

Either a "clogit", "glm" or "coxph" model object

new_data

A dataframe (of the same variables and size as data) representing an alternative distribution of risk factors

response

A string representing the name of the outcome variable in data

weight_vec

An optional vector of inverse sampling weights

References

Bruzzi, P., Green, S.B., Byar, D.P., Brinton, L.A. and Schairer, C., 1985. Estimating the population attributable risk for multiple risk factors using case-control data. American journal of epidemiology, 122(5), pp.904-914