library(splines)
library(survival)
library(parallel)
options(boot.parallel="snow")
options(boot.ncpus=2)
# Simulated data on occupational and environmental exposure to
# chronic cough from Eide, 1995
# First specify the causal graph, in terms of the parents of each node. Then put into a list
parent_urban.rural <- c()
parent_smoking.category <- c("urban.rural")
parent_occupational.exposure <- c("urban.rural")
parent_y <- c("urban.rural","smoking.category","occupational.exposure")
parent_list <- list(parent_urban.rural, parent_smoking.category,
parent_occupational.exposure, parent_y)
# also specify nodes of graph, in order from root to leaves
node_vec <- c("urban.rural","smoking.category","occupational.exposure", "y")
model_list=automatic_fit(Hordaland_data,
parent_list=parent_list, node_vec=node_vec, prev=.09)
out <- average_paf(data=model_list[[length(model_list)]]$data,
model_list=model_list,
parent_list=parent_list, node_vec=node_vec, prev=.09, nperm=10,
riskfactor_vec = c("urban.rural","occupational.exposure"),ci=FALSE)
plot(out)
# \donttest{
# plot with confidence intervals for average and sequential PAF
# (This is probably more useful for more than 2 risk factors).
# Separate axes for each risk factor so confidence intervals can be clearly displayed
out <- average_paf(data=model_list[[length(model_list)]]$data,
model_list=model_list,
parent_list=parent_list, node_vec=node_vec, prev=.09, nperm=10,
riskfactor_vec = c("urban.rural","occupational.exposure"),ci=TRUE,boot_rep=8)
plot(out)
# Here we plot, with margin of error of point estimate when 50 permutations are used
out <- average_paf(data=model_list[[length(model_list)]]$data,
model_list=model_list,
parent_list=parent_list, node_vec=node_vec, prev=.09, nperm=50,
riskfactor_vec = c("urban.rural","occupational.exposure"),ci=FALSE,exact=FALSE)
plot(out)
# }
Run the code above in your browser using DataLab