
Simulates exact samples of a multivariate max-stable distribution.
rmstable(n, model = c("HR", "logistic", "neglogistic", "dirichlet")[1], d, par)
Numeric
Number of simulations.
The parametric model type; one of:
HR
(default),
logistic
,
neglogistic
,
dirichlet
.
Dimension of the multivariate Pareto distribution.
Respective parameter for the given model
, that is,
model = HR
.
model = logistic
.
model = neglogistic
.
d
with positive entries, if model = dirichlet
.
The simulation follows the extremal function algorithm in dom2016;textualgraphicalExtremes. For details on the parameters of the Huesler-Reiss, logistic and negative logistic distributions see dom2016;textualgraphicalExtremes, and for the Dirichlet distribution see coles1991modelling;textualgraphicalExtremes.
Other sampling functions:
rmpareto()
,
rmpareto_tree()
,
rmstable_tree()
## A 4-dimensional HR distribution
n <- 10
d <- 4
G <- cbind(
c(0, 1.5, 1.5, 2),
c(1.5, 0, 2, 1.5),
c(1.5, 2, 0, 1.5),
c(2, 1.5, 1.5, 0)
)
rmstable(n, "HR", d = d, par = G)
## A 3-dimensional logistic distribution
n <- 10
d <- 3
theta <- .6
rmstable(n, "logistic", d, par = theta)
## A 5-dimensional negative logistic distribution
n <- 10
d <- 5
theta <- 1.5
rmstable(n, "neglogistic", d, par = theta)
## A 4-dimensional Dirichlet distribution
n <- 10
d <- 4
alpha <- c(.8, 1, .5, 2)
rmstable(n, "dirichlet", d, par = alpha)
Run the code above in your browser using DataLab