powered by
This function calculates a kernel matrix of the exponential random walk kernel \(K_{ER}\).
CalculateExponentialRandomWalkKernel(G, par)
a list of igraph graphs
igraph
a coefficient \(\beta\), with which the weight \(\lambda_k\) for each step \(k\) is given as \(\lambda_k = \beta^k / k!\)
a kernel matrix of the exponential random walk kernel \(K_{ER}\)
Gartner, T., Flach, P., Wrobel, S.: On graph kernels: Hardness results and efficient alternatives, Learning Theory and Kernel Machines (LNCS 2777), 129-143 (2003) https://link.springer.com/chapter/10.1007/978-3-540-45167-9_11.
# NOT RUN { data(mutag) K <- CalculateExponentialRandomWalkKernel(mutag[1:5], .1) # }
Run the code above in your browser using DataLab