inla.cgeneric
to implement the PC-prior of a
precision matrix as inverse of a correlation matrix.Build an inla.cgeneric
to implement the PC-prior of a
precision matrix as inverse of a correlation matrix.
cgeneric_pc_prec_correl(
n,
lambda,
theta.base,
debug = FALSE,
useINLAprecomp = TRUE,
libpath = NULL
)
a inla.cgeneric
, cgeneric()
object.
integer to define the size of the matrix
numeric (positive), the penalization rate parameter
numeric vector with the model parameters at the base model
integer, default is zero, indicating the verbose level. Will be used as logical by INLA.
logical, default is TRUE, indicating if it is to be used the shared object pre-compiled by INLA. This is not considered if 'libpath' is provided.
string, default is NULL, with the path to the shared object.
The precision matrix parametrization step 1: $$Q0 = \left[ \begin{array}{ccccc} 1 & & & & \\ \theta_1 & 1 & & & \\ \theta_2 & \theta_n & & & \\ \vdots & & \ldots & \ddots & \\ \theta_{n-1} & \theta_{2n-3} \ldots & \theta_m & 1 \end{array} \right] $$
step 2: \(V = Q0^{-1}\)
step 3: \(S = diag(V)^{1/2}\)
step 4: \(C = SVS\)
step 5: \(Q = C^{-1}\)
$$p(Q|\lambda) = p(\theta[1:m] | lambda) =$$ $$ p_C(C(Q)) | Jacobian C(Q) |$$ where p_C is the PC-prior for correlation, see section 6.2 of Simpson et. al. (2017), which is based on the hypersphere decomposition.
The hypershere decomposition, as proposed in Rapisarda, Brigo and Mercurio (2007) consider \(\theta[k] \in [0, \infty], k=1,...,m=n(n-1)/2\) compute \(x[k] = pi/(1+exp(-theta[k]))\) organize it as a lower triangle of a \(n \times n\) matrix $$B[i,j] = \left\{\begin{array}{cc} cos(x[i,j]) & j=1 \\ cos(x[i,j])prod_{k=1}^{j-1}sin(x[i,k]) & 2 <= j <= i-1 \\ prod_{k=1}^{j-1}sin(x[i,k]) & j=i \\ 0 & j+1 <= j <= n \end{array}\right.$$ Result $$\gamma[i,j] = -log(sin(x[i,j]))$$ $$KLD(R) = \sqrt(2\sum_{i=2}^n\sum_{j=1}^{i-1} \gamma[i,j]$$
Daniel Simpson, H\aa vard Rue, Andrea Riebler, Thiago G. Martins and Sigrunn H. S\o rbye (2017). Penalising Model Component Complexity: A Principled, Practical Approach to Constructing Priors Statistical Science 2017, Vol. 32, No. 1, 1–28. <doi 10.1214/16-STS576>
Rapisarda, Brigo and Mercurio (2007). Parameterizing correlations: a geometric interpretation. IMA Journal of Management Mathematics (2007) 18, 55-73. <doi 10.1093/imaman/dpl010>