MultSbm: Multinomial Stochastic Block Model Prior class
Description
An S4 class to represent a Multinomial Stochastic Block Model. Such model can be used to cluster multi-layer graph vertex, and model a square adjacency cube \(X\) of size NxNxM with the following generative model :
$$ \pi \sim Dirichlet(\alpha)$$
$$ Z_i \sim \mathcal{M}(1,\pi)$$
$$ \theta_{kl} \sim Dirichlet(\beta)$$
$$ X_{ij.}|Z_{ik}Z_{jl}=1 \sim \mathcal{M}(L_{ij},\theta_{kl})$$
With \(L_{ij}=\sum_{m=1}^MX_{ijm}\). These classes mainly store the prior parameters value \(\alpha,\beta\) of this generative model.
The MultSbm-class must be used when fitting a simple MultSbm whereas the MultSbmPrior-class must be sued when fitting a CombinedModels-class.
Usage
MultSbmPrior(beta = 1, type = "guess")
MultSbm(alpha = 1, beta = 1, type = "guess")
Value
a MultSbmPrior-class object
a MultSbm-class object
Arguments
beta
Dirichlet prior parameter over Multinomial links
type
define the type of networks (either "directed", "undirected" or "guess", default to "guess"), for undirected graphs the adjacency matrix is supposed to be symmetric.
alpha
Dirichlet prior parameter over the cluster proportions (default to 1)