Samples values by locatoins from the Greenspace Seasonality Data Cube developed by Wu et al. (2024), ESA WorldCover 10m Annual Composites Dataset by Zanaga et al. (2021), or Sentinel-2-l2a images.
sample_values(
samples = NULL,
time = NULL,
source = "gsdc",
output_bands = NULL,
cloud_cover = 10,
vege_perc = 0,
select = "latest",
method = "first",
quiet = TRUE
)A data.frame containing greenspace values extracted at each point
across all bands. Each row corresponds to a sample location;
columns represent band values.
A list, matrix, data.frame, or sf object of point locations.
Can be a list of length-2 numeric vectors (list(c(lon, lat))),
a 2-column matrix or data.frame, or an sf object with POINT geometry in any CRS.
numeric or vector. The time of interest. See Detail.
character. The data source for extracting greenspace values:
gsdc for Greenspace Seasonality Data Cube (also see get_gsdc()]),
esa_ndvior esa_landcover for ESA WorldCover 10m Annual Dataset
(also see get_esa_wc()]), and s2a_ndvi or s2a_bands for
Sentinel-2-l2a image data (also see get_s2a_ndvi()]). The default is gsdc.
vector. A list of band names (c('B04', 'B08')).
The default is NULL. (Only required, when source = "s2a_bands")
All available bands can be found here
numeric. The percentage of cloud coverage for retrieving
Sentinel-2-l2a images. (Only required, when source = "s2a_ndvi" or source = "s2a_bands")
numeric. The percentage of cloud coverage for retrieving
Sentinel-2-l2a images. (Only required, when source = "s2a_ndvi" or source = "s2a_bands")
character. one of "latest", "earliest", "all". The default is "latest".
character. A method for mosaicing layers: one of "mean", "median", "min", "max", "modal", "sum", "first", "last". The default is "first".
logical. Whether show progress bars for some process.
time: For the greenspace seasonality data cube, only years from 2019 to 2022
are availabe. For ESA WorldCover 10m Annual Composites Dataset, only 2020
and 2021 are available.
Wu, S., Song, Y., An, J. et al. High-resolution greenspace dynamic data cube from Sentinel-2 satellites over 1028 global major cities. Sci Data 11, 909 (2024). https://doi.org/10.1038/s41597-024-03746-7
Zanaga, D., Van De Kerchove, R., De Keersmaecker, W., Souverijns, N., Brockmann, C., Quast, R., Wevers, J., Grosu, A., Paccini, A., Vergnaud, S., Cartus, O., Santoro, M., Fritz, S., Georgieva, I., Lesiv, M., Carter, S., Herold, M., Li, L., Tsendbazar, N.-E., … Arino, O. (2021). ESA WorldCover 10 m 2020 v100 (Version v100). Zenodo. https://doi.org/10.5281/zenodo.5571936
Zanaga, D., Van De Kerchove, R., Daems, D., De Keersmaecker, W., Brockmann, C., Kirches, G., Wevers, J., Cartus, O., Santoro, M., Fritz, S., Lesiv, M., Herold, M., Tsendbazar, N.-E., Xu, P., Ramoino, F., & Arino, O. (2022). ESA WorldCover 10 m 2021 v200 (Version v200). Zenodo. https://doi.org/10.5281/zenodo.7254221
# see supported urban areas and their boundaries
check_available_urban()
boundary <- check_urban_boundary(uid = 11)
# sample locations with in the boundary
samples <- sf::st_sample(boundary, size = 20)
# extract values
gs_samples <- sample_values(samples,
# time = 2022
)
Run the code above in your browser using DataLab