Adds 5 new nested columns to the input_df: `dirichlet_params`, `gamma_params_A`, `gamma_params_B`, and `samples`. This samples from multiple revenue per session distributions at once.
sample_multi_rev_per_session(input_df, priors, n_samples = 50000)
input_df with 4 new nested columns `dirichlet_params`, `gamma_params_A`, `gamma_params_B`, and `samples`. `samples` in each row should be a tibble of length `n_samples`.
Dataframe containing option_name (str), sum_conversions (dbl), sum_sessions (dbl), sum_revenue (dbl), sum_conversion_2 (dbl), sum_sessions_2 (dbl), sum_revenue_2 (dbl).
Optional list of priors alpha0 and beta0. Default \(Beta(1,1)\) will be use otherwise.
Optional integer value. Defaults to 50,000 samples.
See update_rules vignette for a mathematical representation.
$$conversion_i ~ MultiNomial(\phi_1, \phi_2, ..., \phi_k)$$ $$\phi_k ~ Dirichlet(\alpha, \beta)$$ Conversion Rate is sampled from a Dirichlet distribution with a Multinomial likelihood of an individual converting.