Learn R Programming

groHMM (version 1.6.0)

Rnorm.exp: Rnorm.exp fits a normal+exponential distribution to a specified data vector using maximum likelihood.

Description

Distrubtion function devined by: alpha*Normal(mean, varience)+(1-alpha) *Exponential(lambda).

Usage

Rnorm.exp(xi, wi = rep(1, NROW(xi)), guess = c(0.5, 0, 1, 1), tol = sqrt(.Machine$double.eps), maxit = 10000)

Arguments

xi
A vector of observations, assumed to be real numbers in the inveraval (-Inf,+Inf).
wi
A vector of weights. Default: vector of repeating 1; indicating all observations are weighted equally. (Are these normalized internally?! Or do they have to be [0,1]?)
guess
Initial guess for paremeters. Default: c(0.5, 0, 1, 1).
tol
Convergence tolerance. Default: sqrt(.Machine$double.eps).
maxit
Maximum number of iterations. Default: 10,000.

Value

Returns a list of parameters for the best-fit normal distribution (alpha, mean, varience, and lambda).

Details

Fits nicely with data types that look normal overall, but have a long tail starting for positive values.