library(groupTesting)
## Example 1
# Parameter: p (proportion)
MLE <- 0.42
Var <- 0.016
# (a) Test H0: p = 0.50 vs. H1: p != 0.50
R <- matrix(1, nrow=1, ncol=1)
p0 <- 0.50
waldTest( R=R, thetaHat=MLE, r=p0, Sigma=Var )
## Example 2
# Parameter: beta = (beta1, beta2), regression coefficients
MLE <- c(1.09, 2.95)
Cov <- rbind(c(0.21, -0.27),
c(-0.27, 0.66))
# (a) Test H0: beta1 = beta2 vs. H1: beta1 != beta2
R <- rbind(c(1,-1))
waldTest( R=R, thetaHat=MLE, r=0, Sigma=Cov, L="1 vs 2" )
# (b) Test H0: beta1 = 0 vs. H1: beta1 != 0
R <- rbind(c(1,0))
waldTest( R=R, thetaHat=MLE, r=0, Sigma=Cov )
## Example 3
# Parameter: beta = (beta0, beta1, beta2)
MLE <- c(-3.05, 1.99, 0.93)
Cov <- rbind(c( 0.045, -0.022, -0.034),
c(-0.022, 0.032, 0.008),
c(-0.034, 0.008, 0.048))
# Performing simultaneous test:
# H0: beta0 = -3, H0: beta1 = 2, H0: beta2 = 1
# H1: beta0 != -3, H1: beta1 != 2, H1: beta2 != 1
R <- rbind(c(1,0,0),
c(0,1,0),
c(0,0,1))
r <- matrix( c(-3,2,1), nrow=3 )
waldTest( R=R, thetaHat=MLE, r=r, Sigma=Cov)
Run the code above in your browser using DataLab