Computes the Morgan-Mercer-Flodin growth model
$$ y(t) = \frac{(w_0 \gamma + \alpha t^m)}{\gamma} +t^m$$
Usage
mmf(t, alpha, w0, gamma, m)
mmf.inverse(x, alpha, w0, gamma, m)
Arguments
t
time
alpha
upper asymptote
w0
the value at t = 0
gamma
parameter that controls the point of inflection
m
growth rate
x
size
Author
Daniel Rodriguez
References
A. Khamiz, Z. Ismail, and A. T. Muhammad, "Nonlinear growth models for
modeling oil palm yield growth," Journal of Mathematics and Statistics,
vol. 1, no. 3, p. 225, 2005.