######***###### family = "gaussian" ######***######
# load data
data(auto)
# fit model (formula method, response = mpg)
mod <- grpnet(mpg ~ ., data = auto)
# print regularization path info
mod
# plot proportion of null deviance explained
plot(mod)
# \donttest{
######***###### family = "multigaussian" ######***######
# load data
data(auto)
# fit model (formula method, response = (mpg, displacement))
y <- as.matrix(auto[,c(1,3)])
mod <- grpnet(y ~ ., data = auto[,-c(1,3)], family = "multigaussian",
standardize.response = TRUE)
# print regularization path info
mod
# plot proportion of null deviance explained
plot(mod)
######***###### family = "hsvm" ######***######
# load data
data(auto)
# redefine origin (Domestic vs Foreign)
auto$origin <- ifelse(auto$origin == "American", "Domestic", "Foreign")
# fit model (formula method, response = origin with 2 levels)
mod <- grpnet(origin ~ ., data = auto, family = "hsvm")
# print regularization path info
mod
# plot proportion of null deviance explained
plot(mod)
######***###### family = "binomial" ######***######
# load data
data(auto)
# redefine origin (Domestic vs Foreign)
auto$origin <- ifelse(auto$origin == "American", "Domestic", "Foreign")
# fit model (formula method, response = origin with 2 levels)
mod <- grpnet(origin ~ ., data = auto, family = "binomial")
# print regularization path info
mod
# plot proportion of null deviance explained
plot(mod)
######***###### family = "multinomial" ######***######
# load data
data(auto)
# fit model (formula method, response = origin with 3 levels)
mod <- grpnet(origin ~ ., data = auto, family = "multinomial")
# print regularization path info
mod
# plot proportion of null deviance explained
plot(mod)
######***###### family = "poisson" ######***######
# load data
data(auto)
# fit model (formula method, response = horsepower)
mod <- grpnet(horsepower ~ ., data = auto, family = "poisson")
# print regularization path info
mod
# plot proportion of null deviance explained
plot(mod)
######***###### family = "negative.binomial" ######***######
# load data
data(auto)
# fit model (formula method, response = horsepower)
mod <- grpnet(horsepower ~ ., data = auto, family = "negative.binomial")
# print regularization path info
mod
# plot proportion of null deviance explained
plot(mod)
######***###### family = "Gamma" ######***######
# load data
data(auto)
# fit model (formula method, response = mpg)
mod <- grpnet(mpg ~ ., data = auto, family = "Gamma")
# print regularization path info
mod
# plot proportion of null deviance explained
plot(mod)
######***###### family = "inverse.gaussian" ######***######
# load data
data(auto)
# fit model (formula method, response = mpg)
mod <- grpnet(mpg ~ ., data = auto, family = "inverse.gaussian")
# print regularization path info
mod
# plot proportion of null deviance explained
plot(mod)
# }
Run the code above in your browser using DataLab