Learn R Programming

grppenalty (version 2.1-0)

Concave 1-norm and 2-norm group penalty in linear and logistic regression

Description

The package implements the concave 1-norm and 2-norm group penalty in linear and logistic regression. The concave 1-norm group penalty includes 1-norm group SCAD and 1-norm group MCP. The concave 1-norm group penalty has bi-level selection features. That is it selects variables at group and individual levels with proper tuning parameters. The concave 1-norm group penalty is robust to mis-specified group information. The concave 2-norm group penalty includes 2-norm group SCAD and 2-norm group MCP. The concave 2-norm group penalty select variable at group level only. The package can also fit group Lasso, which is a special case of concave 2-norm group penalty when the regularization parameter kappa equals zero. The highly efficient (block) coordinate descent algorithm (CDA) is used to compute the solutions for both penalties in linear models. The highly stable and efficient (block) CDA and minimization-majorization approach are used to compute the solution for both penalties in logistic models. In the computation of solution surface, the solution path along kappa is implemented. This provides a better solution path compared to the solution path along lambda. The package also provides a tuning parameter selection method based on cross-validation for both linear and logistic models.

Copy Link

Version

Install

install.packages('grppenalty')

Monthly Downloads

4

Version

2.1-0

License

GPL (>= 2)

Maintainer

Dingfeng Jiang

Last Published

February 17th, 2014

Functions in grppenalty (2.1-0)

cv.plot

Plot the cross validation performance
grppenalty

Compute the solution for the concave 1-norm and 2-norm group penalties
cv.grppenalty

Tuning parameter selection for the concave 1-norm and 2-norm group penalties
path.plot

Plot the solution path for the concave 1-norm and 2-norm group penalties