extractAIC: extractAIC method for class 'glc', 'gqc', 'gcjc', and 'grg'
Description
Extract Akaike's An Information Criteria from a General Linear, Quadratic, or Conjunctive Classifier, or a General Random Guessing model
Usage
# S3 method for glc
extractAIC(fit, scale, k = 2, …)
# S3 method for gqc
extractAIC(fit, scale, k = 2, …)
# S3 method for gcjc
extractAIC(fit, scale, k = 2, …)
# S3 method for grg
extractAIC(fit, scale, k = 2, …)
Arguments
fit
object of class glc, gqc, gcjc, or grg
scale
unused argument
k
numeric specifying the penalty per parameter to be used in calculating AIC. Default to 2.
…
further arguments (currently not used).
Value
A numeric vector of length 2 including:
df
the degrees of freedom for the fitted model fit.
AIC
the Akaike's Information Criterion for fit.
Details
As with the default method, the criterion used is
$$AIC = - 2\log L + k \times \mbox{df},$$
where \(L\) is the likelihood and \(df\) is the degrees
of freedom (i.e., the number of free parameters) of fit.
# NOT RUN {data(subjdemo_2d)
#fit a 2d suboptimal modelfit.2dl <- glc(response ~ x + y, data=subjdemo_2d,
category=subjdemo_2d$category, zlimit=7)
extractAIC(fit.2dl)
# }