ishi_homma_fun: Ishigami-Homma function evaluation
Description
Evaluates the Ishigami-Homma function.
Input samples are drawn from a uniform distribution over \([-\pi, \pi]^3\)
Usage
ishi_homma_fun(N, A = 2, B = 1)
Value
A list with two elements:
x: a numeric matrix of size N x 8 containing the input samples.
y: a numeric vector of length N with the corresponding function outputs.
Arguments
N
Number of input samples to generate.
A
(default: 2) Numeric, amplitude of the second sine component .
B
(default: 1) Numeric, coefficient of the interaction term.
Details
The Ishigami-Homma function is defined as:
$$Y = \sin(X_1) + A \cdot \sin^2(X_2) + B \cdot X_3^4 \cdot \sin(X_1)$$
where \(X_i \sim \mathcal{U}(-\pi, \pi)\).