Learn R Programming

gsaot (version 1.1.0)

ishi_homma_fun: Ishigami-Homma function evaluation

Description

Evaluates the Ishigami-Homma function. Input samples are drawn from a uniform distribution over \([-\pi, \pi]^3\)

Usage

ishi_homma_fun(N, A = 2, B = 1)

Value

A list with two elements:

  • x: a numeric matrix of size N x 8 containing the input samples.

  • y: a numeric vector of length N with the corresponding function outputs.

Arguments

N

Number of input samples to generate.

A

(default: 2) Numeric, amplitude of the second sine component .

B

(default: 1) Numeric, coefficient of the interaction term.

Details

The Ishigami-Homma function is defined as: $$Y = \sin(X_1) + A \cdot \sin^2(X_2) + B \cdot X_3^4 \cdot \sin(X_1)$$ where \(X_i \sim \mathcal{U}(-\pi, \pi)\).

See Also

sobol_fun, gaussian_fun

Examples

Run this code
result <- ishi_homma_fun(1000)
head(result$x)
head(result$y)

Run the code above in your browser using DataLab