# For 90 percent power (pow), a call to gsearlyModel provides a feasible design
fp <- c(0.0000,0.0010,0.0250)
tn <- c(0.2400,0.7200,0.9750)
modeldesign <- gsearlyModel(rmodel="dilin", trecruit=36, s=3, tfu=c(3,6,12),
tinterims=c(18,30), pow=0.9, vphi=0.5, m=2,
cmodel="uniform", sd=20, rho=0.5, theta=8, fp=fp, tn=tn)
# Simulate data from this model with raw data using full=TRUE
simdata <- gsearlySimulate(mod=modeldesign, nsim=10, full=TRUE)
# Extract raw data for a single simulation
simdat1 <- simdataExtract(simdata, simn=1, tinterims=18, full=TRUE)
# Get model parameters
modelParameters(data=simdat1$data, vcovmat=simdat1$model$covariance)
# Try alternative covariance model
varmat <- diag(c(18,22,24))
vcovmat <- tcrossprod(crossprod(varmat,corrExp(rho=0.8,
tfu=simdat1$model$tfu)),varmat)
modelParameters(data=simdat1$data, vcovmat=vcovmat)
Run the code above in your browser using DataLab