data(meuse)
data(meuse.grid)
v <- variogram(log(zinc)~1,~x+y, meuse)
m <- fit.variogram(v, vgm(1, "Sph", 300, 1))
plot(v, model = m)
set.seed(131)
sim <- krige(formula = log(zinc)~1, locations = ~x+y, model = m,
data = meuse, newdata = meuse.grid, nmax = 15, beta = 5.9, nsim = 5)
# show all 5 simulation, using map.to.lev to rearrange sim:
levelplot(z~x+y|name, map.to.lev(sim, z=c(3:7)), aspect = mapasp(sim))
# unconditional simulation on a 100 x 100 grid
xy <- expand.grid(1:100, 1:100)
names(xy) <- c("x","y")
g.dummy <- gstat(formula = z~1, locations = ~x+y, dummy = TRUE, beta = 0,
model = vgm(1,"Exp",15), nmax = 20)
yy <- predict(g.dummy, newdata = xy, nsim = 4)
# show one realisation:
levelplot(sim1~x+y, yy, aspect = mapasp(yy))
# show all four:
levelplot(z~x+y|name, map.to.lev(yy, z=c(3:6)), aspect = mapasp(yy))
Run the code above in your browser using DataLab