```
# NOT RUN {
library(sp)
data(meuse)
coordinates(meuse) = ~x+y
data(meuse.grid)
gridded(meuse.grid) = ~x+y
m <- vgm(.59, "Sph", 874, .04)
# ordinary kriging:
x <- krige(log(zinc)~1, meuse, meuse.grid, model = m)
spplot(x["var1.pred"], main = "ordinary kriging predictions")
spplot(x["var1.var"], main = "ordinary kriging variance")
# simple kriging:
x <- krige(log(zinc)~1, meuse, meuse.grid, model = m, beta = 5.9)
# residual variogram:
m <- vgm(.4, "Sph", 954, .06)
# universal block kriging:
x <- krige(log(zinc)~x+y, meuse, meuse.grid, model = m, block = c(40,40))
spplot(x["var1.pred"], main = "universal kriging predictions")
# krige0, using user-defined covariance function and multiple responses in y:
# exponential variogram with range 500, defined as covariance function:
v = function(x, y = x) { exp(-spDists(coordinates(x),coordinates(y))/500) }
# krige two variables in a single pass (using 1 covariance model):
y = cbind(meuse$zinc,meuse$copper,meuse$lead,meuse$cadmium)
x <- krige0(zinc~1, meuse, meuse.grid, v, y = y)
meuse.grid$zinc = x[,1]
spplot(meuse.grid["zinc"], main = "zinc")
meuse.grid$copper = x[,2]
spplot(meuse.grid["copper"], main = "copper")
# the following has NOTHING to do with kriging, but --
# return the median of the nearest 11 observations:
x = krige(zinc~1, meuse, meuse.grid, set = list(method = "med"), nmax = 11)
# get 25%- and 75%-percentiles of nearest 11 obs, as prediction and variance:
x = krige(zinc~1, meuse, meuse.grid, nmax = 11,
set = list(method = "med", quantile = 0.25))
# get diversity (# of different values) and mode from 11 nearest observations:
x = krige(zinc~1, meuse, meuse.grid, nmax = 11, set = list(method = "div"))
# }
```

Run the code above in your browser using DataCamp Workspace