Note that the unit is K/Pa; multiply by 1e4 to get the more useful K/dbar.
gsw_adiabatic_lapse_rate_ice(t, p)
in-situ temperature (ITS-90) [ degC ]
sea pressure [dbar], i.e. absolute pressure [dbar] minus 10.1325 dbar
adiabatic lapse rate (note unconventional unit) [ K/Pa ]
The present R function works with a wrapper to a C function contained within the GSW-C system (Version 3.05-4 dated 2017-08-07, available at https://github.com/TEOS-10/GSW-C, as git commit '5b4d959e54031f9e972f3e863f63e67fa4f5bfec'), which stems from the GSW-Fortran system (https://github.com/TEOS-10/GSW-Fortran) which in turn stems from the GSW-Matlab system (https://github.com/TEOS-10/GSW-Matlab). Consult http://www.teos-10.org to learn more about these software systems, their authorships, and the science behind it all.
http://www.teos-10.org/pubs/gsw/html/gsw_adiabatic_lapse_rate_ice.html
# NOT RUN {
t <- c(-10.7856, -13.4329, -12.8103, -12.2600, -10.8863, -8.4036)
p <- c( 10, 50, 125, 250, 600, 1000)
lr <- gsw_adiabatic_lapse_rate_ice(t, p)
expect_equal(lr*1e7, c(0.218777853913651, 0.216559115188599, 0.216867659957613,
0.216988337914416, 0.217182707402780, 0.218100558740840))
# }
Run the code above in your browser using DataLab