h2o.coxph(x, y, data, key = "", weights, ties = c("efron", "breslow"),
init = 0, control = h2o.coxph.control(...), ...)h2o.coxph.control(lre = 9, iter.max = 20, ...)
# H2OCoxPHModel summary functions
## S3 method for class 'H2OCoxPHModel':
summary(object, conf.int = 0.95, scale = 1, ...)
## S3 method for class 'H2OCoxPHModel':
survfit(formula, newdata, conf.int = 0.95,
conf.type = c("log", "log-log", "plain", "none"), ...)
# H2OCoxPHModel extractor functions
## S3 method for class 'H2OCoxPHModel':
extractAIC(fit, scale, k = 2, ...)
## S3 method for class 'H2OCoxPHModel':
logLik(object, ...)
## S3 method for class 'H2OCoxPHModel':
vcov(object, ...)
"(stop, event)"
or "(stop, event)"
respectively.H2OParsedData
object containing the
variables in the model."efron"
or "breslow"
.h2o.coxph.control
h2o.coxph
.h2o.coxph
.H2OCoxPHModel
.H2OParsedData
object
containing a new data set.H2OCoxPHModel
.Harrell, Jr. F.E., Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis. Springer-Verlag, 2001.
Therneau, T., Grambsch, P., Modeling Survival Data: Extending the Cox Model. Springer-Verlag, 2000.
coxph
,
summary.coxph
,
survfit.coxph
,
extractAIC
,
logLik
,
vcov
library(h2o)
localH2O = h2o.init()
library(survival)
bladder.hex <- as.h2o(localH2O, bladder, key = "bladder.hex")
h2o.coxph(x = c("number", "size"), y = c("stop", "event"), data = bladder.hex)
Run the code above in your browser using DataLab