Usage
h2o.coxph(x, y, data, key = "", weights = NULL, offset = NULL,
ties = c("efron", "breslow"), init = 0,
control = h2o.coxph.control(...), ...)h2o.coxph.control(lre = 9, iter.max = 20, ...)
# H2OCoxPHModel summary functions
## S3 method for class 'H2OCoxPHModel':
summary(object, conf.int = 0.95, scale = 1, ...)
## S3 method for class 'H2OCoxPHModel':
survfit(formula, newdata, conf.int = 0.95,
conf.type = c("log", "log-log", "plain", "none"), ...)
# H2OCoxPHModel extractor functions
## S3 method for class 'H2OCoxPHModel':
extractAIC(fit, scale, k = 2, ...)
## S3 method for class 'H2OCoxPHModel':
logLik(object, ...)
## S3 method for class 'H2OCoxPHModel':
vcov(object, ...)
Arguments
x
A character vector containing the column names of the predictors in
the model.
y
A character vector comprised of two or three elements representing
"(stop, event)"
or "(stop, event)"
respectively.
data
An H2OParsedData
object containing the
variables in the model.
key
An optional unique hex key assigned to the resulting model.
If none is given, a key will automatically be generated.
weights
An optional character string representing the case weights in
the model.
offset
An optional character vector representing the offset terms in
the model.
ties
A character string denoting which approximation method for
handling ties should be used in the partial likelihood;
one of either "efron"
or "breslow"
.
init
A numeric vector containing the finite starting values for the
model coefficients.
control
The model fitting control arguments specified by
h2o.coxph.control
lre
A positive number for the log-relative error (LRE) of subsequent
log partial likelihood calculations to determine convergence in
h2o.coxph
.
iter.max
A positive integer denoting the maximum number of iterations
to allow for convergence in h2o.coxph
.
object, formula, fit
An object of class H2OCoxPHModel
.
newdata
An optional H2OParsedData
object
containing a new data set.
conf.int
An optional number that specifies the confidence interval
level.
conf.type
An optional string that specifies the confidence interval
type.
scale
An optional number that specifies the scale parameter of the
model.
k
An optional number specifying the weight for the equivalent
degrees of freedoms in the AIC calculation.