as.h2o

0th

Percentile

Create H2OFrame

Import R object to the H2O cloud.

Usage
as.h2o(x, destination_frame = "", ...)

# S3 method for default as.h2o(x, destination_frame = "", ...)

# S3 method for H2OFrame as.h2o(x, destination_frame = "", ...)

# S3 method for data.frame as.h2o(x, destination_frame = "", ...)

# S3 method for Matrix as.h2o(x, destination_frame = "", ...)

Arguments
x

An R object.

destination_frame

A string with the desired name for the H2OFrame.

arguments passed to method arguments.

Details

Method as.h2o.data.frame will use fwrite if data.table package is installed in required version.

To speedup execution time for large sparse matrices, use h2o datatable. Make sure you have installed and imported data.table and slam packages. Turn on h2o datatable by options("h2o.use.data.table"=TRUE)

References

http://blog.h2o.ai/2016/04/fast-csv-writing-for-r/

See Also

use.package

Aliases
  • as.h2o
  • as.h2o.default
  • as.h2o.H2OFrame
  • as.h2o.data.frame
  • as.h2o.Matrix
Examples
# NOT RUN {
h2o.init()
iris_hf <- as.h2o(iris)
euro_hf <- as.h2o(euro)
letters_hf <- as.h2o(letters)
state_hf <- as.h2o(state.x77)
iris_hf_2 <- as.h2o(iris_hf)
stopifnot(is.h2o(iris_hf), dim(iris_hf) == dim(iris),
          is.h2o(euro_hf), dim(euro_hf) == c(length(euro), 1L),
          is.h2o(letters_hf), dim(letters_hf) == c(length(letters), 1L),
          is.h2o(state_hf), dim(state_hf) == dim(state.x77),
          is.h2o(iris_hf_2), dim(iris_hf_2) == dim(iris_hf))
if (requireNamespace("Matrix", quietly=TRUE)) {
  data <- rep(0, 100)
  data[(1:10) ^ 2] <- 1:10 * pi
  m <- matrix(data, ncol = 20, byrow = TRUE)
  m <- Matrix::Matrix(m, sparse = TRUE)
  m_hf <- as.h2o(m)
  stopifnot(is.h2o(m_hf), dim(m_hf) == dim(m))
}
# }
Documentation reproduced from package h2o, version 3.22.1.1, License: Apache License (== 2.0)

Community examples

Looks like there are no examples yet.