h2o.anomaly

0th

Percentile

Anomaly Detection via H2O Deep Learning Model

Detect anomalies in an H2O dataset using an H2O deep learning model with auto-encoding.

Usage
h2o.anomaly(object, data, per_feature = FALSE)
Arguments
object

An '>H2OAutoEncoderModel object that represents the model to be used for anomaly detection.

data

An H2OFrame object.

per_feature

Whether to return the per-feature squared reconstruction error

Value

Returns an H2OFrame object containing the reconstruction MSE or the per-feature squared error.

See Also

h2o.deeplearning for making an H2OAutoEncoderModel.

Aliases
  • h2o.anomaly
Examples
# NOT RUN {
library(h2o)
h2o.init()
prostate_path = system.file("extdata", "prostate.csv", package = "h2o")
prostate = h2o.importFile(path = prostate_path)
prostate_dl = h2o.deeplearning(x = 3:9, training_frame = prostate, autoencoder = TRUE,
                               hidden = c(10, 10), epochs = 5)
prostate_anon = h2o.anomaly(prostate_dl, prostate)
head(prostate_anon)
prostate_anon_per_feature = h2o.anomaly(prostate_dl, prostate, per_feature=TRUE)
head(prostate_anon_per_feature)
# }
Documentation reproduced from package h2o, version 3.22.1.1, License: Apache License (== 2.0)

Community examples

Looks like there are no examples yet.