Retrieves the AUUC value from an H2OBinomialUpliftMetrics. If the metric parameter is "AUTO", the type of AUUC depends on auuc_type which was set before training. If you need specific AUUC, set metric parameter. If "train" and "valid" parameters are FALSE (default), then the training AUUC value is returned. If more than one parameter is set to TRUE, then a named vector of AUUCs are returned, where the names are "train", "valid".
h2o.auuc(object, train = FALSE, valid = FALSE, metric = NULL)
An H2OBinomialUpliftMetrics
Retrieve the training AUUC
Retrieve the validation AUUC
Specify the AUUC metric to get specific AUUC. Possibilities are NULL, "qini", "lift", "gain".
if (FALSE) {
library(h2o)
h2o.init()
f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/uplift/criteo_uplift_13k.csv"
train <- h2o.importFile(f)
train$treatment <- as.factor(train$treatment)
train$conversion <- as.factor(train$conversion)
model <- h2o.upliftRandomForest(training_frame=train, x=sprintf("f%s",seq(0:10)), y="conversion",
ntrees=10, max_depth=5, treatment_column="treatment",
auuc_type="AUTO")
perf <- h2o.performance(model, train=TRUE)
h2o.auuc(perf)
}
Run the code above in your browser using DataLab