if (FALSE) {
#==============================================
# hSDM.binomial()
# Example with simulated data
#==============================================
#=================
#== Load libraries
library(hSDM)
#==================
#== Data simulation
#= Number of sites
nsite <- 200
#= Set seed for repeatability
seed <- 1234
#= Number of visits associated to each site
set.seed(seed)
visits<- rpois(nsite,3)
visits[visits==0] <- 1
#= Ecological process (suitability)
set.seed(seed)
x1 <- rnorm(nsite,0,1)
set.seed(2*seed)
x2 <- rnorm(nsite,0,1)
X <- cbind(rep(1,nsite),x1,x2)
beta.target <- c(-1,1,-1)
logit.theta <- X %*% beta.target
theta <- inv.logit(logit.theta)
set.seed(seed)
Y <- rbinom(nsite,visits,theta)
#= Data-sets
data.obs <- data.frame(Y,visits,x1,x2)
#==================================
#== Site-occupancy model
mod.hSDM.binomial <- hSDM.binomial(presences=data.obs$Y,
trials=data.obs$visits,
suitability=~x1+x2,
data=data.obs,
suitability.pred=NULL,
burnin=1000, mcmc=1000, thin=1,
beta.start=0,
mubeta=0, Vbeta=1.0E6,
seed=1234, verbose=1,
save.p=0)
#==========
#== Outputs
#= Parameter estimates
summary(mod.hSDM.binomial$mcmc)
pdf(file="Posteriors_hSDM.binomial.pdf")
plot(mod.hSDM.binomial$mcmc)
dev.off()
#== glm resolution to compare
mod.glm <- glm(cbind(Y,visits-Y)~x1+x2,family="binomial",data=data.obs)
summary(mod.glm)
#= Predictions
summary(mod.hSDM.binomial$theta.latent)
summary(mod.hSDM.binomial$theta.pred)
pdf(file="Pred-Init.pdf")
plot(theta,mod.hSDM.binomial$theta.pred)
abline(a=0,b=1,col="red")
dev.off()
}
Run the code above in your browser using DataLab