powered by
Compute generalized logit and generalized inverse logit functions.
logit(x, min = 0, max = 1) inv.logit(x, min = 0, max = 1)
Transformed value(s).
value(s) to be transformed
Lower end of logit interval
Upper end of logit interval
Gregory R. Warnes <greg@warnes.net>
The generalized logit function takes values on [min, max] and transforms them to span [-Inf,Inf] it is defined as:
$$y = log(\frac{p}{(1-p)})$$
where
$$p=\frac{(x-min)}{(max-min)}$$
The generized inverse logit function provides the inverse transformation:
$$x = p' (max-min) + min$$
$$p'=\frac{exp(y)}{(1+exp(y))}$$
if (FALSE) { x <- seq(0,10, by=0.25) xt <- logit(x, min=0, max=10) cbind(x,xt) y <- inv.logit(xt, min=0, max=10) cbind(x,xt,y) }
Run the code above in your browser using DataLab