List of arrays of 4x4 complex gamma matrices in the tmLQCD chiral gamma basis,
where \(\gamma^5 = \gamma^0 \gamma^1 \gamma^2 \gamma^3 = \) diag(c(1,1,-1,-1))
and the UKQCD gamma basis, where \(\gamma^5 = \gamma^0 \gamma^1 \gamma^2 \gamma^3\).
The index mappings are as follows
gm[['chiral_tmlqcd']][1,,]
\(\gamma^0\)
gm[['chiral_tmlqcd']][2,,]
\(\gamma^1\)
gm[['chiral_tmlqcd']][3,,]
\(\gamma^2\)
gm[['chiral_tmlqcd']][4,,]
\(\gamma^3\)
gm[['chiral_tmlqcd']][5,,]
\(\gamma^5\)
gm[['chiral_tmlqcd']][6,,]
positive parity projector \( \frac{1}{2} (1 + \gamma^0) \)
gm[['chiral_tmlqcd']][7,,]
negative parity projector \( \frac{1}{2} (1 - \gamma^0) \)
gm[['ukqcd']][1,,]
\(\gamma^1\)
gm[['ukqcd']][2,,]
\(\gamma^2\)
gm[['ukqcd']][3,,]
\(\gamma^3\)
gm[['ukqcd']][4,,]
\(\gamma^4\)
gm[['ukqcd']][5,,]
\(\gamma^5\)
gm[['ukqcd']][6,,]
positive parity projector \( \frac{1}{2} (1 + \gamma^4) \)
gm[['ukqcd']][7,,]
negative parity projector \( \frac{1}{2} (1 - \gamma^4) \)
The function gm_mu
can be used to access its elements using a more
"natural" indexing.