data(Renin)
## Fit a model for covariate effects.
m1 <- glm(case ~ age + factor(race) + gender, family = binomial(link = logit))
## Obtain sandwich variance-covariance matrix.
id <- 1:length(case)
v1 <- sandcov(m1, id)
## Calculate robust standard error estimates.
se1 <- sqrt(diag(v1))
## Fit a model for haplotype and covariate effects.
m2 <- haplo.ccs(case ~ gender + age + factor(race) + haplo(geno[,1:12], mode = "additive"),
control = haplo.em.control(min.posterior=1e-4), referent = "223144")
## Obtain sandwich variance-covariance matrix by one of two methods.
v2 <- m2$covariance
v2 <- vcov(m2)
## Calculate robust standard error estimates.
se2 <- sqrt(diag(v2))
Run the code above in your browser using DataLab