library(daltoolbox)
# Load labeled anomaly dataset
data(examples_anomalies)
# Use train-test example
dataset <- examples_anomalies$tt
dataset$event <- factor(dataset$event, labels=c("FALSE", "TRUE"))
slevels <- levels(dataset$event)
# Split into training and test
train <- dataset[1:80,]
test <- dataset[-(1:80),]
# Normalize features
norm <- minmax()
norm <- fit(norm, train)
train_n <- daltoolbox::transform(norm, train)
# Configure a decision tree classifier
model <- hanc_ml(cla_dtree("event", slevels))
# Fit the classifier
model <- fit(model, train_n)
# Evaluate detections on the test set
test_n <- daltoolbox::transform(norm, test)
detection <- detect(model, test_n)
print(detection[(detection$event),])
Run the code above in your browser using DataLab