Learn R Programming

hawkesbow (version 1.0.3)

E1_imaginary: Exponential integral of imaginary argument

Description

Calculates the value of $$E_1(ix) = \int_1^\infty \frac{e^{-ixt}}{t} \mathrm{d}t$$ using its relation to the trigonometric integrals (cf. https://en.wikipedia.org/wiki/Exponential_integral#Exponential_integral_of_imaginary_argument): $$E_1(ix) = i \left[ -\frac{1}{2} \pi + Si(x) \right] - Ci(x)$$ and their Pad\'e approximants (cf. https://en.wikipedia.org/wiki/Trigonometric_integral#Efficient_evaluation)

Usage

E1_imaginary(x)

Value

The exponential integral of argument ix

Arguments

x

A non-negative number

Examples

Run this code
E1_imaginary(1.0)

Run the code above in your browser using DataLab