Etheta_imaginary: Incomplete gamma function of imaginary argument with arbitrary power
Description
Calculates the value of
$$-ix e^{ix} E_\theta(ix) = -ix e{ix} \int_1^\infty t^{-\theta} e^{-ixt} \mathrm d t$$
for \(\theta > 0\).
This is achieved using recursive integrations by parts until \(0 < \theta \le 1\),
then using either the exponential integral E1_imaginary if \(\theta = 1\),
or the incomplete gamma function inc_gamma_imag if \(0 < \theta < 1\).
Usage
Etheta_imaginary(theta, x)
Value
The incomplete gamma function of imaginary argument with arbitrary power (see Details)