Learn R Programming

hawkesbow (version 1.0.3)

Etheta_imaginary: Incomplete gamma function of imaginary argument with arbitrary power

Description

Calculates the value of $$-ix e^{ix} E_\theta(ix) = -ix e{ix} \int_1^\infty t^{-\theta} e^{-ixt} \mathrm d t$$ for \(\theta > 0\). This is achieved using recursive integrations by parts until \(0 < \theta \le 1\), then using either the exponential integral E1_imaginary if \(\theta = 1\), or the incomplete gamma function inc_gamma_imag if \(0 < \theta < 1\).

Usage

Etheta_imaginary(theta, x)

Value

The incomplete gamma function of imaginary argument with arbitrary power (see Details)

Arguments

theta

A strictly positive number

x

A vector of non-negative numbers

Examples

Run this code
Etheta_imaginary(3.14, 1.0)

Run the code above in your browser using DataLab