Learn R Programming

hbmem (version 0.2)

sampleNormR: Function sampleNormR

Description

Samples posterior of mean parameters of the hierarchical linear normal model with the effects a linear function of some other variable.

Usage

sampleNormR(sample, phi,blockD,y,subj, item, lag, I, J, R, nsub, nitem,
    s2mu, s2a, s2b, meta, metb, sigma2, sampLag)

Arguments

sample
Block of linear model parameters from previous iteration.
y
Vector of data
phi
Vector of linear slopes on effects.
blockD
Block of parameters that will serve as the means of random effects
subj
Vector of subject index, starting at zero.
item
Vector of item index, starting at zero.
lag
Vector of lag index, zero-centered.
I
Number of subjects.
J
Number of items.
R
Total number of trials.
nsub
Vector of length (I) containing number of trials per each subject.
nitem
Vector of length (J) containing number of trials per each item.
s2mu
Prior variance on the grand mean mu; usually set to some large number.
s2a
Shape parameter of inverse gamma prior placed on effect variances.
s2b
Rate parameter of inverse gamma prior placed on effect variances. Setting both s2a AND s2b to be small (e.g., .01, .01) makes this an uninformative prior.
meta
Matrix of tuning parameter for metropolis-hastings decorrelating step on mu and alpha. This hould be adjusted so that .2 < b0 < .6.
metb
Tunning parameter for decorrelating step on alpha and beta.
sigma2
Variance of distribution.
sampLag
Logical. Whether or not to sample the lag effect.

Value

  • The function returns a list. The first element of the list is the newly sampled block of parameters. The THIRD element contains a vector of 0s and 1s indicating which of the decorrelating steps were accepted.

References

Not published yet.

See Also

hbmem

Examples

Run this code
library(hbmem)

I=50
J=100
M=500
B=I+J+4
mu=.5
muS2=0
s2a=.2
s2b=.2
s2aS2=0
s2bS2=0

phi=c(.2,.08)
blockD=rep(0,B)
blockD[2:(I+1)]=rnorm(I,0,.5)
blockD[(I+2):(I+J+1)]=rnorm(J,0,.5)

    R = I * J
    alpha = rnorm(I, phi[1]*blockD[2:(I+1)], sqrt(s2a))
    beta =  rnorm(J, phi[2]*blockD[(I+2):(I+J+1)], sqrt(s2b))
    alphaS2 = rnorm(I, 0, sqrt(s2aS2))
    betaS2 = rnorm(J, 0, sqrt(s2bS2))
    subj = rep(0:(I - 1), each = J)
    item = rep(0:(J - 1), I)
    lag = rep(0, R)
    resp = 1:R
    for (r in 1:R) {
        mean = mu + alpha[subj[r] + 1] + beta[item[r] + 1]
        sd = sqrt(exp(muS2 + alphaS2[subj[r] + 1] + betaS2[item[r] + 1]))
        resp[r] = rnorm(1, mean, sd)
    }
    sim=(as.data.frame(cbind(subj, item, lag, resp)))



blockR=matrix(0,M,B)
blockR[1,c(I+J+2,I+J+3)]=c(.1,.1)
met=c(.1,.1)
b0=c(0,0)

for(m in 2:M)
  {
tmp=sampleNormR(blockR[m-1,],phi,blockD,sim$resp,sim$subj,sim$item,sim$lag,I,J,I*J,table(sim$sub),table(sim$item),10,.01,.01,met[1],met[2],1,1)
blockR[m,]=tmp[[1]]
b0=b0+tmp[[3]]
}

est=colMeans(blockR)

par(defpar(2,3))
plot(blockR[,1],t='l')
abline(h=mu,col="blue")
plot(blockR[,I+J+2],t='l')
abline(h=s2a,col="blue")
plot(blockR[,I+J+3],t='l')
abline(h=s2b,col="blue")

plot(est[2:(I+1)]~alpha);abline(0,1,col="blue")
plot(est[(I+2):(I+J+1)]~beta);abline(0,1,col="blue")

#Compare estimates from regular normal ones:

s.block=matrix(0,nrow=M,ncol=B)
met=c(.1,.1);b0=c(0,0)
for(m in 2:M)
{
tmp=sampleNorm(s.block[m-1,],sim$resp,rep(0,length(sim$resp)),sim$subj,sim$item,sim$lag,1,I,J,R,R,table(sim$subj),
table(sim$item),100,.01,.01,met[1],met[2],1,1)
s.block[m,]=tmp[[1]]
b0=b0 + tmp[[2]]
}

est2=colMeans(s.block)

par(defpar(1,2))
plot(est[2:(I+1)]~est2[2:(I+1)]);abline(0,1,col="blue")
plot(est[(I+2):(I+J+1)]~est2[(I+2):(I+J+1)]);abline(0,1,col="blue")

Run the code above in your browser using DataLab