library(hbmem)
N=2
t.mu=c(1,2)
I=20
J=50
R=I*J
#make some data
tmp=normalSim(N=N,I=I,J=J,mu=t.mu,s2a=2,s2b=2,muS2=log(1),s2aS2=0,s2bS2=0)
dat=tmp[[1]]
t.alpha=tmp[[2]]
t.beta=tmp[[3]]
ncond=table(dat$cond)
nsub=table(dat$sub)
nitem=table(dat$item)
M=10
keep=2:M
B=N+I+J+3
s.block=matrix(0,nrow=M,ncol=B)
met=c(.1,.1);b0=c(0,0)
jump=.001
for(m in 2:M)
{
tmp=sampleNorm(s.block[m-1,],dat$resp,dat$cond,dat$subj,dat$item,dat$lag,
N,I,J,R,ncond,nsub,nitem,5,.01,.01,met[1],met[2],1,1,1)
s.block[m,]=tmp[[1]]
b0=b0 + tmp[[2]]
#Auto-tuning of metropolis decorrelating steps
if(m>20 & m.3)*c(jump,jump)
met[met
Run the code above in your browser using DataLab